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Abstract—The emergence of the Internet of Things (IoT)
technology in recent years has led to a considerable amount
of data to be shared across different organizations. The publish
and subscribe (Pub/Sub) paradigm, with its asynchronous, one-
to-many and decoupling characteristics, is considered to be a
promising communication model in IoT. However, designing a
Pub/Sub framework for IoT data sharing confronts two chal-
lenges: Byzantine faults and privacy concerns. Byzantine nodes
that are subjectively malicious or hacked by attackers may dis-
card or forge data in the broker network composed of untrusted
IoT organizations. Unauthorized brokers or clients may try to
obtain the content of publications or subscriptions, thus violating
the IoT data privacy. Existing works have limitations in terms of
relatively low scalability and high overhead in tackling these two
challenges. In this paper, we propose Galaxy, a blockchain based
Pub/Sub IoT data sharing framework. To achieve Byzantine
fault-tolerant (BFT) Pub/Sub, Galaxy adopts sharding to improve
scalability and achieve efficient BFT Pub/Sub workflow within
each shard with a novel leader rotation scheme. In attaining
privacy-preserving Pub/Sub, a secret key sharing and encrypted
Pub/Sub scheme is designed in Galaxy to achieve low overhead
without breaking the decoupling of the system. We implemented
a prototype of Galaxy and deployed it on Alibaba Cloud
for experimental evaluation. The experiment results show the
feasibility and efficiency of Galaxy.

Index Terms—Internet of Things(IoT), Blockchain, IoT Data
Sharing, Secure Communications, Security and Privacy.

I. INTRODUCTION

W ITH the rapid development of Internet of Things (IoT)
technology in recent years, the number of IoT devices

has grown dramatically and has been adopted in various fields,
such as industrial manufacturing [1], healthcare [2], and smart
grid [3], etc. These IoT devices and subsequent applications
generate a massive amount of data that need to be collected,
shared and analyzed across different organizations. In order
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to better meet the data sharing needs in the above scenario,
some network protocols and data sharing systems based on
the publish and subscribe (Pub/Sub) abstraction have been
designed and used in IoT [4]–[6]. The Pub/Sub paradigm
enables one-to-many, asynchronous, and decoupled commu-
nication between publishers and subscribers. Basically, there
are three entities in a Pub/Sub system: brokers, subscribers,
and publishers. Brokers are dedicated servers that provide
pub/sub services. Subscribers subscribe to the topics they are
interested in by sending subscriptions to brokers. Publishers
advertise publications on specific topics to brokers, and these
publications are matched against subscriptions and forwarded
to interested subscribers by brokers. In the past years, services
under the Pub/Sub abstraction have been widely used in
various systems within datacenters like Apache Kafka [7],
Pulsar [8] and Google Cloud Pub/Sub [9].

With the rise of IoT and edge computing, however, the
broker network may be composed of edge servers controlled
by untrusted tenants from different organizations. The lack
of trust between organizations brings new challenges to the
design of Pub/Sub system in this scenario: Byzantine faults
and privacy concerns.

Byzantine faults: Pub/Sub systems often achieve fault
tolerance and high availability by replicating data among
brokers. Pub/Sub systems within data centers usually only
consider crash fault [7], [10] and realize crash fault tolerance
(CFT) based on consensus algorithms such as Paxos [11] and
Raft [12]. However, in an IoT network composed of untrusted
servers from different organizations, some data sharing in-
volving business information may lead to conflicts of eco-
nomic interests, resulting in Byzantine behaviors like message
forgery and discarding. Additionally, brokers may be hacked
by external attackers and thus may crash or become malicious,
making the situation worse. Blockchain, a modern form of
state machine replication (SMR) that achieves Byzantine fault
tolerance (BFT), has attracted massive attention in recent
years. Some works try to combine blockchain with Pub/Sub
system to achieve a higher level of fault tolerance [6], [13],
[14], while several issues still need to be further addressed:
The high communication and cryptographic overhead of BFT
consensus leads to its insufficient scalability in large-scale net-
works; some works only achieve incomplete BFT by adopting
blockchain as an additional auditing system; hardware failures,
software errors, and potential malicious attacks result in slow
recovery of leader rotation in the leader-based BFT consensus
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[15], [16], severely degrading the performance of the system.
Therefore, a scalable BFT Pub/Sub system design is needed
to ensure system safety and availability.

Privacy concerns: The information published in IoT con-
tains highly privacy-sensitive data such as medical data and
geographic information. Therefore, some publishers only want
partial subscribers to see the content of specified publications.
For instance, in a medical data sharing scenario, some patients
would like to share their medical records only with designated
hospitals. Similarly, subscribers may not want to disclose their
personal interests, resulting in a desire to limit the exposure of
their subscriptions in the network. Unfortunately, maintaining
the privacy of both publishers and subscribers in the afore-
mentioned trustless network is not possible without special
efforts. Some existing works adopt attribute-based encryption
(ABE) [17] to achieve privacy protection with access control
[18], [19]. Due to the slow pairing-based computation used in
ABE, it is not suitable for the frequent publish and subscribe
operations in IoT. On the other side, symmetric encryptions
are more efficient compared to ABE and other asymmetric
encryption schemes. However, exchanging symmetric keys
directly between publishers and subscribers would break the
decoupling of the system, while relying on a trusted third party
could result in a single point of failure. These issues calls for a
privacy-preserving Pub/Sub system design with low overhead
and without breaking the decoupling nature.

In this paper, we propose Galaxy, a scalable BFT and
privcay-preserving Pub/Sub IoT data sharing framework based
on blockchain. Galaxy adopts a two-layer architecture, com-
prising of a governance layer and a data layer. The governance
layer, which is a a high-performance blockchain deployed
in cloud and maintained by representative IoT organizations,
provides global management services including cross-shard
total order and secret key sharing. The data layer is a multi-
shard blockchain system deployed on edge servers managed by
different IoT organizations and provide clients with Pub/Sub
service. To achieve BFT Pub/Sub, Galaxy adopts shard-
ing, a widely used horizontal scaling technique, to improve
scalability of the underlying blockchain based on a partially
random shard assignment strategy. Within each shard, Galaxy
achieves complete BFT workflow by embedding a stream-
lined BFT consensus module in each broker. To enhance the
performance of the BFT consensus, a crash and withholding
avoidance (CWA) leader rotation algorithm is proposed to
avoid selecting failed nodes as leaders. To achieve privacy-
preserving Pub/Sub, Galaxy adopts symmetric searchable en-
cryption (SSE) [20] and advanced encryption standard (AES)
[21] to reduce the cryptographic computation overhead, and
uses threshold encryption [22] and access control list (ACL)
to share the symmetric keys through the governance layer
without destroying the decoupling nature of the system. We
implement a prototype of Galaxy and deploy it on Alibaba
Cloud for evaluation. The result shows that Galaxy achieves
3994 ops/sec and 3047 ops/sec with a total of 128 brokers
(4 shards each with 32 brokers) under LAN and WAN set-
tings respectively. Moreover, the proposed CWA algorithm
outperforms the round-robin algorithm by a factor of 6x and
4x under the crash and withholding faults respectively when

the proportion of the simulated malicious nodes is close to
one third. Additionally, by comparing our privacy-preserving
Pub/Sub scheme with a representative existing work [23], the
results demonstrate our scheme is efficient and lightweight. In
summary, our contributions are as follows:

1) Trusted IoT Data Sharing Framework: We propose
Galaxy, a two-layer Pub/Sub IoT data sharing frame-
work based on blockchain that enables trusted IoT data
sharing across different organizations. Our framework is
decoupled and modular, making it easily extendable and
deployable on existing IoT systems.

2) Scalable BFT Pub/Sub Design: A partially random shard
assignment strategy is used to improve the scalability of
blockchain, a complete BFT Pub/Sub workflow is de-
signed and a novel leader rotation algorithm is proposed
to avoid electing a failed leader.

3) Lightweight Privacy-Preserving Pub/Sub Design: a se-
cret key sharing and an encrypted Pub/Sub scheme is
designed to achieve relatively low computational over-
head and avoid breaking the decoupling of the system.

4) Prototype Implementation and Evaluation: We imple-
mented a prototype of Galaxy and deployed it on Al-
ibaba Cloud for evaluation. The results demonstrate the
effectiveness and feasibility of Galaxy.

The remainder of this paper is organized as follows. Section
II reviews related works. Section III defines the system model
and gives an overview of Galaxy. We elaborate on the Galaxy’s
BFT Pub/Sub design in Section IV, followed by the privacy-
preserving Pub/Sub design in Section V. In Section VI, we
evaluate a prototype of Galaxy and analyze the experiment
results. Finally, we conclude this paper in Section VII.

II. RELATED WORKS

In this section, we briefly review several related works on
blockchain-based IoT data sharing, fault-tolerant Pub/Sub and
privacy-preserving Pub/Sub systems.

A. Blockchain-based IoT Data Sharing

Due to the decentralization, traceability, and immutability
of blockchain, researchers have proposed many IoT data
sharing systems based on blockchain. Some works utilize the
blockchain to authenticate the validity of the data or the clients.
Shen et al. [24] proposed a blockchain-assisted device authen-
tication scheme for cross-domain communication in industrial
IoT. They design an identity management scheme to authen-
ticate devices anonymously and a key agreement mechanism
to negotiate session keys between devices. In [25], Fan et al.
presented a secure blockchain-based scheme to ensure source
data credibility in the fog environments and use the attribute-
based signature to achieve fine-grained access control. He et al.
[26] introduced a nested blockchain framework with dynamic
node selection for IoT data storage and identity authentication.
Some works also design encryption schemes together with
blockchain to achieve data privacy. Zhang et al. [27] proposed
a blockchain-assisted massive IoT data collection and manage-
ment framework. They use a collaborative identity verification
protocol to ensure reliable data source and a hierarchical data
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aggregation scheme to collect IoT data efficiently and securely.
Qi et al. [28] proposed Cpds, a blockchain-based compressed
and private data sharing framework for industrial IoT. They
adopt a tree-based data compression method and an access
control mechanism based on attribute encryption. Li et al.
[29] proposed a privacy-preserving and rewarding data sharing
scheme based on blockchain. They also use deniable ring
signatures to ensure honest data users can refuse to be framed
without revealing their true identity.

Different from the above work, Galaxy achieves BFT
and privacy-preserving data sharing in a one-to-many, asyn-
chronous, and decoupled manner based on the Pub/Sub com-
munication paradigm and adopts a two-layer and modular
architecture which is scalable and incrementally deployable.

B. Fault-tolerant Pub/Sub
Most existing Pub/Sub systems do not provide fault tol-

erance mechanism or only provide crash fault tolerance [4],
[7]–[10]. For instance, Kafka [7], as a representative industrial
Pub/Sub system, uses ZooKeeper [30] or KRaft (Raft [12] im-
plementation in the new version of Kafka) to reach consensus
on metadata among controllers. For the broker, Kafka allows
passive replication within a replica group called partition.
Systems like Kafka are designed for applications in the data
centers owned by the same organization, and cannot be directly
migrated to the scenario where brokers are deployed across
different organizations and lack mutual trust.

BFT consensus and SMR algorithms applied in blockchain
systems can be used to build decentralized trust in distributed
systems. Some works try to ameliorate Byzantine faults in the
Pub/Sub system by combining blockchain or traditional BFT-
SMR [6], [13], [14], [31]. Ramachandran et al. [6] proposed
Trinity, a system that combines MQTT broker [4] with existing
blockchain including Ethereum [32], Hyperledger Fabric [33],
IOTA [34] and Tendermint [35]. Their solution completely
depends on the blockchain platform used, and only Tender-
mint can realize deterministic BFT without relying on digital
currency. In [13], Huang et al. designed BPS, a blockchain-
enhanced Pub/Sub system based on Kafka [7]. BPS stores
Pub/Sub metadata and access control list into the blockchain
to improve the security level of Kafka. This scheme only uses
the blockchain as an auditing system and cannot guarantee the
BFT of the Pub/Sub service itself. Similarly, HyperPubSub
[14] uses Hyperledger Fabric [33] as an additional component
for Kafka to build a decentralized Pub/Sub service and does
not achieve BFT. Duan et al. [31] take BFT-SMaRt [36]
as a module of brokers to realize complete BFT Pub/Sub.
However, the scheme of running BFT consensus with high
communication complexity among all brokers does not have
sufficient scalability.

Different from the aforementioned works, Galaxy adopts
a multi-shard architecture based on the high-performance
streamlined BFT consensus with a novel leader rotation
scheme to ensure both BFT and scalability of the system.

C. Privacy-preserving Pub/Sub
Existing works employ different cryptographic primitives to

protect the privacy of pub-sub systems, but their schemes have

different limitations in our scenario. ABE [17] is an encryption
scheme that can realize attribute based access control and some
works use ABE to achieve fine-grained privacy. Ion et al.
[18] proposed a Pub/Sub system that achieves confidentiality
and access control by combining ABE and proxy encryption
[37]. Zhang et al. [38] use dual-policy ABE [39] to con-
struct a privacy-preserving attribute-keyword search scheme
for Pub/Sub systems on cloud platforms. The reason why ABE
is not used in our work is that the relatively slow pairing-
based cryptography computations used in ABE make it not
suitable for frequent Pub/Sub operations in a practical system.
On the contrary, symmetric encryption can provide higher
efficiency under the risk of breaking decoupling. Crescenzo
et al. [40] designed a three-party Pub/Sub protocol based on
symmetric encryption and the third party should be honest
in their scheme. Similarly, Rao et al. [41] proposed a filter
privacy aware system based on the content-based Pub/Sub
model, and a trusted anonymous engine is needed in the
proposed system. In [42], Gaballah et al. designed an anony-
mous Pub/Sub protocol using distributed point functions and
private information retrieval. However, their scheme requires
relatively complex computations and relies on synchronicity
assumptions, which is not practical in our scenario.Cui et al.
[23] proposed a privacy-preserving Pub/Sub system to resist
collusion attacks between brokers and clients. Their scheme
adopts SSE and key-policy attribute based encryption (KP-
ABE) scheme to achieve encrypted Pub/Sub matching and
access control, which is similar to our work. However, their
system is not totally BFT and relies on a centralized TA to
distribute the symmetric key.

Based on the above works, Galaxy adopts searchable sym-
metric encryption in the Pub/Sub process to ensure low com-
putational overhead and adopts a tag-based threshold encryp-
tion together with BFT consensus to share symmetric keys and
avoid coupled key sharing or centralized key management.

III. OVERVIEW OF GALAXY

In this section, we define the system model and give a high-
level overview of Galaxy.

A. System Model

Galaxy assumes a partial-synchronous network model [43],
where there exists an unknown Global Stabilization Time
(GST), the network can behave asynchronously till GST. After
GST, any message can be delivered within a bounded duration
∆. For both the governance layer and the data layer, Galaxy
adopts the authenticated setting used in the permissioned
blockchain, that is, there exists a Public Key Infrastructure
(PKI) system and the public key of each node is known by all
entities. Galaxy assumes that each client registers an identity
within an organization and sends messages to nodes within
his/her organization, so we do not consider DDoS attacks.
The permissioned blockchain model is chosen by Galaxy for
two reasons: compared with the public blockchain, the node
identities are easier to manage and more suitable for the
security needs of a block-based system for IoT. In addition,
more efficient and deterministic consensus algorithms can be
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Fig. 1: An overview of Galaxy. The two-layer architecture of Galaxy (left), and the modular design of a Galaxy node (right).

adopted. However, the design of Galaxy can also be gen-
eralized to permissionless scenarios by incorporating hybrid
consensus [44].

Galaxy assumes the nodes at the data layer are divided
into S blockchain shard and each shard contains ni (1 ≤
i ≤ S) nodes. Galaxy assumes the single blockchain at
the governance layer contains m nodes. Galaxy assumes a
Byzantine fault model, where at most f nodes within each
shard or within the governance ledger are Byzantine nodes
(we assume f < ⌊ni

3 ⌋ and f < ⌊m3 ⌋). Galaxy also assumes
the communication channels between the honest nodes and
clients are authenticated point-to-point channels and these
channels are encrypted with TLS/SSL or other cryptographic
protocol. Byzantine nodes may behave arbitrarily and collude
with each other, but cannot compromise the communication
channels between honest nodes and clients. Moreover, Galaxy
assumes an adversary with polynomial time computing power
can control faulty nodes and the adversary cannot break our
cryptographic primitives.

B. System Overview
Galaxy consists of a governance layer and a data layer in a

two-layer hierarchical structure, as shown in Fig.1. The data
layer is a multi-shard blockchain network deployed on edge
servers managed by different IoT organizations. Shards run in
parallel and each shard has its own blockchain ledger. The data
layer nodes implement BFT Pub/Sub service in the application
layer and we refer to the data layer nodes as brokers. The
Pub/Sub service in Galaxy is designed based on the topic-
based and push-based Pub/Sub model, and only considers

online clients connected to brokers, which is similar to MQTT
[4]. Each subscription contains one or more specific topics
of interest to a client. Each publication consists of a header
and a payload, and the header contains one or more topics
for matching with the subscriptions. When a broker receives a
new publication, it matches the subscription stored locally and
pushes the matching publication to all subscribers interested
in the related topics. Unlike the multi-shard blockchain in the
data layer, the governance layer consists of a high-performance
permissioned blockchain with smaller network size called
governance ledger, which is deployed in the data centers within
cloud. The nodes in the governance layer are maintained by a
few representative IoT organizations and management services
including secret key sharing and cross-shard message total-
order are implemented at the application module.

Each Galaxy node achieves functional decoupling through a
modular design, as depicted on the right of Fig.1: The network
module is responsible for the communication between node
and clients, as well as between nodes; the consensus module
implements BFT consensus and provide interfaces not tied to
specific consensus algorithms for the application module; the
application module implements specific application services
by calling the interface provided by the consensus module,
which is the main difference between the data layer and the
governance layer; the storage module implements the storage
of the latest data (we implement it as a key-value store)
and the append-only blockchain ledger; The crypto module
implements the encryption and signature primitives required
by other modules, including the threshold encryption and the
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SSE schemes used in our privacy-preserving Pub/Sub design.
Galaxy’s modular architecture enables the modules to be easily
replaced, extended, and allows for incremental deployment
on existing IoT frameworks. More implementation details are
discussed in the Section IV.A. Next, we briefly introduce
the BFT Pub/Sub and privacy-preserving Pub/Sub design of
Galaxy respectively.

BFT Pub/Sub Design: Galaxy adopts sharding, a horizontal
scaling technology widely used in distributed systems, to im-
prove the scalability of the data layer. Due to the limitation of
the number of malicious nodes in BFT consensus, our sharding
strategy not only adopts randomness but also considers the
relationship between organizations to better ensure the safety
of each shard. For each broker in the data layer, we have
implemented a complete BFT Pub/Sub workflow based on
the BFT consensus and provided a series of simple APIs for
clients. The implementation of our consensus module is based
on the streamlined BFT consensus Hotstuff [45] to ensure
O(n) message complexity and optimistic responsiveness. In
addition, we implemented the leader rotation algorithm as an
independent function in the consensus module and propose
a crash and withholding avoidance (CWA) leader rotation
scheme instead of the traditional round-robin scheme in order
to avoid selecting the failed nodes as leaders, and thus improve
the performance of consensus. More details of our BFT
Pub/Sub design are explained in Section IV.

Privacy-Preserving Pub/Sub Design: To achieve data in-
visibility to both brokers and unauthenticated subscribers with
low computational overhead and without violating the decou-
pling, the privacy-preserving Pub/Sub design of Galaxy in-
cludes two phases: secret key sharing and encrypted Pub/Sub.
In the secret key sharing phase, different organizations use
threshold encryption together with an access control list to
share the symmetric keys used for SSE and AES through the
governance ledger without destroying the decoupling nature
of the system. In the encrypted Pub/Sub phase, Galaxy adopts
symmetric searchable encryption to encrypt the publication
headers and subscriptions for secret matching and uses AES
to encrypt the publication payload. We introduce more details
of our privacy-preserving Pub/Sub design in Section V.

IV. BFT PUB/SUB DESIGN

In this section, we elaborate on how Galaxy achieves BFT
Pub/Sub. First, we present how Galaxy assigns brokers into
different shards in a partially random manner. Second, we list
the client APIs related to the BFT Pub/Sub service and their
workflows provided by brokers within each shard. Finally, a
novel leader rotation mechanism is proposed to improve the
performance of the leader-based BFT consensus.

A. Shard Assignment

Sharding is one of the most commonly used horizontal
scaling methods in distributed systems. Unlike traditional
distributed systems, since malicious nodes need to be less
than a certain proportion, the use of sharding in blockchain
systems requires a trade-off between safety and scalability.
Being a blockchain-based Pub/Sub system, Galaxy has to

Organization A

Shard 1 Shard 2

Shard 3 Shard 4

Organization B

Organization C

Organization D
Shard 1 Shard 2

Shard 3 Shard 4

Completely random 

shard assignment

Our scheme

Fig. 2: An example of comparison between completely random
shard assignment and our scheme.

ponder over how to assign nodes to shards in the data layer
to limit the proportion of malicious nodes within each shard.
Most of the existing blockchain systems employ a completely
random assignment method to achieve probabilistic security
[46], [47]. However, we argue that a completely random
method does not conform to the real requirements of the
permissioned blockchains and the proportion of nodes between
organizations within each shard should be taken into account.
This idea comes from a key observation: In permissioned
blockchains, the units of trust are organizations rather than
independent nodes. While organizations usually have enough
computing resources to deploy a large number of nodes to
meet the probabilistic security within each shard, the number
of organizations is often limited. All the nodes within an
organization may intentionally collude and break the safety
of BFT consensus, so it is necessary to control the proportion
of nodes belonging to each organization within each shard.
A simple example of completely random shard assignment
is shown on the left of Fig. 2. In this case, the number of
nodes belonging to an organization within each shard is likely
to exceed one-third, so a malicious organization can easily
destroy the safety of a shard, such as the Organization B within
the Shard 4. More formally, we can use the hypergeometric
distribution to estimate the probability of selecting a faulty
shard. We assume the overall network size K = M ∗N , where
M is the number of organizations and N is the number of
nodes within each organization (here we assume the number of
nodes in organizations is equal for simplicity). We also assume
there are F out of M organizations are Byzantine. Let X be
the random variable that represents the number of Byzantine
nodes assigned to a shard, the probability of selecting a faulty
shard of size n is:

P (X ≥ f) =

n∑
x=f

(
FN
x

)(
K−FN
n−x

)(
K
n

)
Let f = ⌊n3 ⌋ and F = ⌊M4 ⌋, each shard should contain at least
297, 492, 579, 621 nodes to keep the faulty probability under
2−20 when the overall network contains 2, 4, 8, 16 shards,
respectively.

In this section, we propose a partially random shard as-
signment method so that the proportion of nodes belonging
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Algorithm 1 Partially Random Shard Assignment
Input:

The M organizations: O = {O1, O2, ..., OM}
The Ni nodes within Oi: Pi =

{
P 1
i , P

2
i , ..., P

Ni
i

}
, 1 ≤

i ≤M
Output:

The S shards: D = {D1, D2, ..., Dk}

1: Initialize Dk ← ∅ for each 1 ≤ k ≤ S
2: for each organization Oi in O do
3: Ri ← V RF (SKi, Oi)
4: Assignedi ← ∅
5: end for
6: for each shard Dk in D do
7: C ← ⌈min Ni

S ⌉, 1 ≤ i ≤M
8: for each organization Oi in O do
9: while |Assignedi| < C do

10: Randomly select P j
i based on Ri

11: if P j
i /∈ Assignedi ∨ |Assignedi| = Ni then

12: Dk ← Dk ∪ P j
i

13: Assignedi ← Assignedi ∪ P j
i

14: end if
15: end while
16: end for
17: end for
18: return D

to each organization in each shard is equal, as depicted on
the right of Fig. 2. In our scheme, as long as the number
of Byzantine organizations participating in the system is less
than one-third, the shard assignment can achieve deterministic
security regardless of the shard size. The shards assignment
process is given in Algorithm 1. We assume that the number
of shards is S, and Dk represents the kth shard. All orga-
nizations participating in the system register their brokers in
the governance ledger. We assume there are M organizations
(M ≥ 4) and each organization Oi registers Ni nodes. The
id of each node is P j

i , where i represents the organization it
belongs to and j represents its number within the organization.
Each organization also generates a random number Ri and a
proof π(Ri) by using a verifiable random function (VRF) [48]
based on its public key SKi:

Ri ← V RF (SKi, Oi)

π(Ri) ← V RF Proof (SKi, Oi)

Here Ri is used as a random source for the node assignment
process within each organization and π(Ri) can be used to
verify the authenticity of Ri by other organizations with the
public key PKi of Oi. For each shard Dk, Galaxy randomly
selects C nodes within each organization Oi by computing a
permutation of the nodes identifiers based on Ri. The selection
of C here needs to ensure that the nodes in each shard
can be evenly selected from all organizations, even for the
organization with the least number of nodes:

C = ⌈min Ni

S
⌉, 1 ≤ i ≤M

In other words, Galaxy uniformly selects a total of
M⌈min Ni

S ⌉ nodes from all the organizations for each shard.
We choose ⌈min Ni

S ⌉ as the number of nodes selected in each
organization because we try to avoid the situation where one
node is assigned to different shards, while ensuring that each
organization has a sufficient number of nodes to be assigned.
In addition, Galaxy gives priority to selecting nodes that have
not been assigned to a shard. However, when the number of
nodes is insufficient, some nodes may need to participate in
more than one shard, which will bring greater computation and
storage overhead to such nodes, and thus there is a trade-off
between performance and safety. Moreover, for organizations
with an insufficient number of nodes, they can choose to
register more nodes in the next shards assignment phase; when
the number of registered nodes in the organization is too large,
some nodes within the organization will not be allowed to
join any shards and the organization can choose to run CFT
consensus algorithms between nodes within its organization to
achieve higher availability.

After the shard assignment is completed, each shard runs
its BFT consensus instance independently, providing Pub/Sub
services for a range of topics. To determine the corresponding
shard for each topic, our current implementation maps each
topic to the target shard Dtopic based on hashing:

Dtopic = Hash(topic) mod S + 1

For resource constrained IoT clients, they can choose to rely
on trusted proxies to forward messages to the corresponding
shard. Notice that we choose this load balancing strategy
only for the implementation simplicity and other application-
specific load balancing methods can also be used for Galaxy,
which is orthogonal to our work.

B. Pub/Sub Workflow

In each shard of the data layer, Galaxy provides a list of
APIs for clients to perform BFT Pub/Sub. We assume that the
message sent by the client can be expressed as ⟨op, data⟩,
where op represents the operation type, and data is the
data conforming to a specific operation type. In this section,
we describe the client APIs provided by Galaxy and their
workflows in detail:

Authenticate: First, each client pre-registers an identity and
obtains a verifiable token using the TA within its organization.
The client sends the token in the data field to a broker
within the same organization, and the broker decides whether
to establish a connection with the client after verifying the
token. We did not choose to achieve consensus on the client’s
authentication message among brokers for two reasons. First,
the malicious behaviors of the clients, such as spam attacks,
are not the main concern in the permissioned blockchain
[49]. Second, the client’s signature is included in subsequent
messages and recorded on the blockchain, enabling subsequent
auditing.

Subscribe: The client sends subscriptions including a list of
topics in the data field to the broker, and the broker broadcasts
it to all brokers. Next, the BFT consensus algorithm runs
among the brokers to reach an agreement on the subscription.
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Here we choose to implement HotStuff [45] as the consensus
module of the broker to ensure performance and responsive-
ness. We briefly introduce a generic phase in HotStuff: The
leader of the current view batches messages into a block and
broadcast it to all brokers. Brokers verify the block and send
a vote to the leader of the next view, and the next leader will
collect a quorum of votes to form a quorum certificate (QC)
and include the QC in the next proposed block. When a block
is certified by three QCs, the block is considered committed.
Our implementation is based on the event-driven HotStuff and
we refer the readers to the raw paper for full details [45]. When
the subscription is committed, the consensus module hands
over the subscription to the Pub/Sub module, and the Pub/Sub
module stores the subscription in the local key-value database.
Finally, the broker to which the client is connected sends a
reply to the client indicating the successful commitment of
the subscription.

It is worth noting that Galaxy does not force the client to
wait for at least f + 1 replies to ensure safety like traditional
BFT SMR. In Galaxy, clients can choose which trusted brokers
to connect to and use the replies for verification based on their
own conditions. Here the number of brokers, which is called
a custom quorum by us, is a tunable parameter in our system.
We made this design choice for three reasons: First, in our
system model, we assume clients only establish connections
with brokers belonging to their own organization, so there is a
trust relationship between the clients and the brokers. The way
of obtaining information from some trusted nodes is common
even in permissionless blockchains. Second, in order to receive
at least f +1 replies, the client needs to maintain connections
with all or at least most of the brokers, which is impractical for
some resource-constrained clients in IoT. Finally, the user can
broadcast a Read operation, which we will describe below, to
collect at least f + 1 replies to ensure the safety of particular
messages. Galaxy also uses a similar way to send replies to the
clients who initiate the Unsubscribe and Publish operations.

Unsubscribe: Similar to the Subscription operation, the
client sends a list of topics to the brokers to perform unsub-
scription. After the consensus between the brokers is com-
pleted, the Pub/Sub module of each broker is responsible for
deleting the corresponding subscriptions in the local storage.
The broker connected by the client sends a reply to the client
indicating the success of the Unsubscribe operation.

Publish: The client sends a publication in the data field to
the broker. Each publication contains a header and a payload.
The header contains a series of topics and other metadata.
Similar to the subscription operation, the publication is first
replicated among brokers through the consensus module. After
the consensus, the Pub/Sub module of each broker will check
whether there is a subscription from the clients currently con-
nected that matches the topics in the publication header. If yes,
the broker will forward the publication to the corresponding
client. Otherwise, the publication is discarded by the Pub/Sub
module. The broker connected by the client also sends a reply
to the client indicating the result of the Publish operation.

Read: Although Galaxy is a push-based Pub/Sub system,
we also provide a simple Read API for clients to obtain
messages for verification proactively. The client broadcasts a

Read operation to all or a part of brokers to request a specific
block by specifying the block number in the data field. These
brokers return the corresponding block to the client. The user
needs to collect at least f+1 replies to ensure absolute safety.
However, since the brokers discard the blocks that have not
been subscribed to and do not record the locations the clients
have read, the Read operation in Galaxy is only an auxiliary
operation and does not provide the same guarantee as those
pull-based Pub/Sub systems [7], [10], [13].

CSTO Publish: While intra-shard total order may be ade-
quate in most situations, sometimes clients want to realize the
total order among publications across different shards [10],
[50]. In particular, Galaxy’s governance ledger determines a
global total order of the cross-shards publications by imple-
menting an optional Cross-Shards Total Order (CSTO) Publish
API, which is used to verify and order publications from
different shards.

To determine the cross-shard total order of a publica-
tion, the sender of the publication changes the op tag
in the publication from Publish to CSTO Publish. Here
we denote a CSTO publication as P . After the consensus
on the block B containing P is reached, the broker, to
which the sender connected, sends a transaction in the form
of ⟨op, Hp, Hroot, P roof, QC, desc⟩ to the governance
ledger, where op represents the transaction type (CSTO Pub-
lish), HP is the hash of P , Hroot represents the Merkel tree
root hash of the block B, Proof is the Merkle proof proving
that P belongs to the Merkle tree with root Hroot, QC is
a list of quorum certificates (in HotStuff, QC needs to form
a three-chain) showing that the block with Hroot has been
committed, and desc is a description of the publication to
help the governance ledger perform ordering. The governance
ledger runs another BFT consensus to verify and order this
CSTO transaction. The ordering can be performed based on
any deterministic methods, such as shard id, timestamp, or
other specific application semantics through desc. After a
list of CSTO publications are committed in the governance
ledger, clients can determine the cross-shard total order of
these publications by querying the governance ledger.

C. CWA Leader Rotation

In the leader-based BFT consensus like HotStuff, the leader
rotation usually adopts a round-robin scheme. Although this
scheme is simple and fair, it inevitably elects malicious nodes
into the leader periodically, which can significantly degrades
the performance of the consensus algorithms such as HotStuff
which rotates the leader frequently. Due to the complexity of
the Byzantine behaviors, we focus on mitigating the following
two problems:

Crash: Crash here means that the node appears to be
suspended, that is, the faulty node does not propose messages
or participate in consensus voting. This problem can come
from the failure of honest nodes or the intentional behavior of
malicious nodes, which is indistinguishable in the Byzantine
model. Galaxy chooses to consider this problem because it is
an extremely common fault in a large-scale distributed system
where different servers may go down frequently.
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Fig. 3: An simple example to show the basic idea of the CWA
algorithm. Dashed blocks represent blocks that have not yet
been committed and the number on each block represents its
view number. Node A and B both want to get the leader
of view 10, but their underlying blockchains are different
(node A has committed the blocks to view 7 but node B
has only committed the blocks to view 6). By specifying a
delay parameter, they locate the same reference block (view
5) committed by both nodes and use the same prefix of the
blockchain to calculate the reputation.

Withholding: Here we use Withholding to refer to the type
of malicious node that does not propose messages when acting
as a leader, but participates in voting normally. This is a
simple but powerful attack strategy in a partial-synchronous
consensus like HotStuff: the system needs to wait for ∆ time
to trigger a timeout and elect the next leader, and usually
the implementation will extend the parameter ∆ after each
timeout to ensure the liveness. As a result, frequently electing
a Withholding node as the leader can lead to a long-term loss
of liveness of the system. To make matters worse, Withholding
nodes are hard to blame in this case, since they can attribute
their behaviour to a temporary network asynchrony.

A recent work [15] selects the next leader from the voters of
the latest committed block to avoid the crash nodes. However,
their method lacks specifications on the deterministic approach
used to select the leader, which may hinder honest nodes
from reaching a consensus on the latest committed block due
to network asynchrony. Inspired by their work, we designed
a crash and withholding avoidance (CWA) leader rotation
algorithm to elect the leader in each view. In particular,
our approach addresses the following two challenges: First,
consensus needs a leader, and a leader election also needs
to reach a ”consensus” among all honest nodes. In order to
avoid falling into a chicken-and-egg problem, in the CWA
algorithm, each node calculates a reputation map based on its
local blockchain. Honest nodes can get the same reputation
map, and use a deterministic method to select the same node
with a high reputation. We also added an attenuation and an
upper limit of the reputation of each node to avoid monopoly.
Secondly, due to network asynchrony, the last block committed
by honest nodes may be different, that is, the blockchain of an
honest node may be a prefix of the other, which can cause the
honest nodes to fail to agree on the same reputation map for a

Algorithm 2 CWA Leader Rotation Algorithm

1: // Return the leader of view V
2: function GETLEADER(V )
3: // Get the last committed block and its view number
4: Blc ← GETLASTCOMMITTEDBLOCK(V)
5: Vlc ← Blc.VIEW( )
6:
7: // Get the reference view
8: Vref ← V −D
9: if Vref > Vlc then

10: // Fallback to round-robin
11: return ROUNDROBIN(V )
12: end if
13:
14: // Get the reference block by its view number
15: Bref ← GETBLOCKBYVIEW(Vref )
16:
17: // Update the reputation map
18: for Vi ← Vcal, Vref do
19: Bi ← GETBLOCKBYVIEW(Vi)
20: M [Bi.PROPOSER( )]←M [Bi.PROPOSER( )]+Rp

21: for Pvoter in Bi.VOTERS( ) do
22: M [Pvoter]←M [Pvoter] +Rv

23: end for
24: for j ← 1, N do
25: M [Pj ]← α ·M [Pj ]
26: if M [Pj ] > Rmax then
27: M [Pj ]← Rmax

28: end if
29: end for
30: end for
31: Vcal ← Vref

32:
33: // Get voters of the reference block
34: V otersref ← Bref .VOTERS( )
35: // Find the first f proposers of the reference block
36: Pexclude ← ∅
37: while |Pexclude| < f ∧ Bref ̸= Bgenesis do
38: Pexclude ← Pexclude ∪Bref .PROPOSER( )
39: Bref ← Bref .PARENT( )
40: end while
41:
42: // Choose the candidates of the leader
43: Candidates← V otersref \ Pexclude

44:
45: // Eelect the leader
46: Leader ← argmax

P∈Candidates
M [P ]

47:
48: return Leader
49: end function

long time. To address this challenge, we introduce the concept
of reference block instead of relying on the last committed
block to ensure that honest nodes consider the same blockchain
prefix and get the same reputation map. Additionally, we
also define a tunable delay parameter to trade off between
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capturing the recent behavior of nodes and possible temporary
inconsistency. Moreover, we use the round-robin algorithm
as a fallback to ensure liveness in the case of occasional
temporary inconsistency when the reference block has not
been committed. Fig. 3 illustrates a simple example of the
CWA leader rotation algorithm to demonstrate its basic idea.

The complete process of the CWA leader rotation algorithm
is given in Algorithm 2. It is a function that runs independently
on each node, the input is a view number V , and the return
value is the node id of the view V ’s leader. First, we get the
view number Vlc of the last committed block (note that Vlc

may be different for different honest nodes) and we calculate
the reference view Vref by subtracting a delay parameter D
from V :

Vref ← V −D

For different nodes within the same view, V and D are
the same and thus their calculated reference views are also
the same. Therefore, honest nodes all consider the same
blockchain prefix formed by the reference view and its pre-
vious view blocks. If Vref is greater than Vlc, that is to say,
the current node has not committed the block of Vref , then
the node falls back to the round-robin. In this case, the nodes
within the system may enter a temporary inconsistency, but
they can eventually reach a consensus by using the round-
robin fallback and making Vlc exceed Vref . In addition, the
likelihood of this inconsistency can be reduced by increasing
D, but a larger D also means that only the behavior of earlier
views of the nodes can be captured, which is a trade-off de-
pending on the implementation and deployment environment.
In addition, in HotStuff, D needs to be greater than 3 to ensure
that the reference block can be committed. If Vref is less than
Vlc, the node updates its local reputation map M with blocks
from view Vcal+1 to V , where Vcal is a local variable storing
the view number of the last block that has been calculated in
the reputation computation, the key of M is the id of each
node and the value is its reputation. CWA algorithm adds Rp

to the reputation of the proposer of each block, and Rv to the
reputation of each voter:

M [Bi.PROPOSER( )]←M [Bi.PROPOSER(]) +Rp

M [Pvoter]←M [Pvoter] +Rv

In order to avoid monopoly, Galaxy also multiplies the rep-
utation value of each node by a decay parameter α (α < 1)
for each block, and sets a reputation upper limit Rmax. After
updating the reputation map, CWA algorithm chooses leader
candidates in a similar way to [15] to ensure chain-quality,
that is, we exclude the proposers set Pexclude of the first f
blocks from the voter of the reference block:

Candidates← V otersref \ Pexclude

Finally, CWA algorithm selects the node with the highest
reputation from the candidates set as the leader of view V .

V. PRIVACY-PRESERVING PUB/SUB DESIGN

In this section, we introduce the Pub/Sub privacy protec-
tion scheme in Galaxy. We first analyze Pub/Sub privacy
requirements and challenges of a Pub/Sub system and give an

overview of our scheme by introducing the design philosophy
of Galaxy, and then we describe the two phases of our
proposed scheme in detail: the secret key sharing phase and
the encrypted Pub/Sub phase.

A. Design Philosophy

Although the BFT consensus allows nodes to ensure data
consistency even in the presence of malicious nodes, one
problem remains unsolved: there is a large amount of privacy-
sensitive data in the IoT, such as medical records, geographic
locations, etc. In the absence of effective privacy-preserving
methods, passive attackers can easily obtain the content of
clients’ subscriptions and publications, and the transparency
of the blockchain makes the situation even worse. In reality,
the senders may only want to share information among the
users they designate. Therefore, it is necessary to design a
scheme to achieve fine-grained privacy protection of messages
without destroying the advantages brought by the blockchain.
In particular, Galaxy aims to achieve the following two re-
quirements:

• Invisibility to Unauthenticated Subscribers: If a correct
publisher submits a publication P on a topic T , then
P should not be accessed by subscribers who do not
subscribe to the topic T or do not have access right on
P .

• Invisibility to Brokers: Brokers need to be able to
match publications and subscriptions without knowing
their actual content.

However, it is not easy to meet the above requirements under
a Pub/Sub system. Specifically, Galaxy addresses the following
two prominent challenges:

• Achieve Low Computational Overhead: ABE is a
promising encryption method that implements fine-
grained access control and is adopted in several existing
works. However, for high-frequency Pub/Sub operations,
using asymmetric encryption like ABE will bring huge
computation overhead. In Galaxy, we choose to use
symmetric encryption to reduce computation overhead.
In particular, we apply dynamic SSE to subscriptions and
the headers of publications to implement secret matching
between subscriptions and publications.

• Guarantee the Inherent Decoupling of Pub/Sub: a
direct key exchange between publishers and subscribers
would break the decoupling of the system while relying
on a trusted third party could be a single point of failure.
In Galaxy, we choose to apply threshold encryption to
encrypt and share symmetric secret keys in a decentral-
ized manner with the help of the governance ledger. Our
scheme ensures that the key requester can decrypt the
symmetric key used by the Pub/Sub encryption only after
obtaining the decryption shares from at least f +1 nodes
(i.e. at least one honest node).

In general, Galaxy’s privacy-preserving Pub/Sub scheme
is divided into two phases: the key sharing phase and the
encrypted Pub/Sub phase. Next, we will elaborate on these
two phases respectively.
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B. Secret Key Sharing

In this section, we describe how Galaxy uses a tag-based
threshold encryption scheme to share the symmetric secret
keys among blockchain nodes in the Pub/Sub process. Our
threshold encryption scheme extends the Ghadafi’s distributed
tag-based encryption scheme [51] by deploying Shamir secret
sharing [52] to compute the secret keys of nodes.

Setup: We assume that the number of nodes in the gov-
ernance ledger is n, and we set up an (f + 1, n) threshold
encryption scheme. A threshold encryption Setup algorithm
takes the total number of nodes n, the threshold parameter
t (t = f + 1) and a security parameter λ as inputs, and
output (TPK, TSK, TV K), where TPK is a public key,
TSK = (TSK1, TSK2, . . . , TSKn) is a list of private keys,
and TV K = (T = (TSK1, TV K2, . . . , TV Kn) is a list of
verification keys. TPK is used as a systems parameter in
Galaxy and each node Pi of the governance ledger has its
own private key TSKi and TV Ki, 1 ≤ i ≤ n. In addition,
a client A generates its SSE secret key pair (SKsse, SKaes)
by using the TA in its organization, where SKsse is the secret
key used by SSE and SKaes is the secret key used by AES.

Key Encryption: The client A runs a threshold encryption
algorithm Encrypt, takes the secret key pair (SKsse, SKaes),
an access control list ACL, and the threshold public keys
TPK as inputs, and outputs the encrypted key pair Ckey . Here
ACL is used as the tag to prevent chosen ciphertext attack.

Key Publication: To make the secret key pair available to
other clients, the client A attaches the access control list ACL
to Ckey (here our implementation is based on organization id
access control, but it can also be extended to attribute-based or
other access control), and sends a key publication transaction
including (ACL,Ckey) to the governance ledger. During the
consensus, each node Pi runs a ciphertext validation algorithm
IsV alid to verify the transaction. IsV alid takes the public
key TPK, the access control list ACL, and the encrypted
key pair Ckey as inputs, and outputs 1 if Ckey is valid or 0
other wise. After the consensus, (ACL,Ckey) is replicated at
every node in the governance ledger if if the transaction is
valid .

Decryption Share Generation: A client B tries to get the
latest key published by a client A from the governance ledger
by broadcasting a request to all the nodes in the governance
ledger. Each node in the governance ledger independently
verifies whether the organization to which client B belongs
satisfies the ACL issued by client A. If yes, the node i
runs an threshold decryption algorithm Decrypt that takes the
encrypted key pair Ckey and its threshold private key TSKi

as inputs, and outputs a decryption share σi. Each node Pi
sends its decryption share σi with its verification key TPKi

to client B respectively. Since our system model assumes that
the attacker cannot compromise the communication channel
between the honest nodes and clients, the attacker cannot
obtain more than f decryption shares and thus the original
message cannot be recovered.

Key Recovery: After receiving each decryption share, the
client B can run a share verification algorithm ShareV erify
which takes the public key TPK, the verification key TPKi,

the access control list ACL, the encrypted key pair Ckey ,
and the decryption share σi as inputs, and outputs 1 if σi

is valid or 0 otherwise. After collecting at least f + 1 valid
decryption shares, the client B runs a message recovery
algorithm Combine. The algorithm takes the encrypted key
pair Ckey and the f + 1 decryption shares (σ1, σ2, . . . , σf+1)
as input, and outputs the raw secret keys (SKsse, SKaes) used
in the encrypted Pub/Sub phase, which we will introduce next.

C. Encrypted Pub/Sub

In this section, we introduce how to encrypt publications and
subscriptions based on the keys published on the governance
ledger and how the brokers complete anonymous matching
of publications and subscriptions based on the dynamic SSE
scheme [20].

Subscribe: We define a subscription as S and the list of
topics included in S as T . A subscriber runs a Setup algorithm,
takes the SSE secret key SKsse and the topic list T as
inputs, and outputs an encrypted topic list ET . The subscriber
replaces T in the subscription S with ET and sends S to the
brokers. ET is stored by the brokers for later searching.

In order to add new topics to an existing subscription, the
subscriber runs an InsertToken algorithm that takes SKsse,
the list of new topics to be added Tnew as inputs, and
outputs an insert token itk. The subscriber replaces T in the
subscription S with itk and an add operator, and sends S to
the brokers using the Subscribe API. Each broker processes
the subscription S after consensus and runs an Insert algorithm
which takes ET and itk as input, and generates a new topic
list ET ′.

Unsubscribe: To delete existing topics from an existing
subscription, the subscriber runs an DeleteToken algorithm that
takes SKsse, the list of existing topics to be deleted Tdel as
inputs, and outputs a delete token dtk. The subscriber replaces
T in the unsubscription US with dtk and a delete operator and
sends US to the brokers using the Unsubscribe API. Each
broker processes the unsubscription US after consensus and
runs an Delete algorithm which takes ET and dtk as input,
and generates a new topic list ET ′.

Publish: We define a publication as P . For the topic list
Tpub in the header of P , a publisher runs a SearchToken
algorithm to encrypt the topic list as a SSE search token.
It uses the SSE secret key SKsse and Tpub as inputs and
outputs a search token stk. For the payload, Ppub of P , the
publisher uses the AES secret key SKaes to encrypt Ppub as a
ciphertext Cpub. The publisher sends the encrypted publication
P including stk and Cpub to the brokers. After the consensus,
each broker runs a Search algorithm. It takes the stk in the
header of P , the SSE secret key SKsse and the encrypted
database containing all subscriptions EDB as inputs and
outputs all the subscription identifiers Umatch matching the
topic list Tpub. For the subscriber Subi of each subscription
Si in Umatch, if Subi is connected to the current broker, then
the broker forwards P to Subi. After receiving P , Subi runs
an AES decryption algorithm. The decryption algorithm uses
SKaes and the encrypted payload Cpub as inputs and outputs
the origin publication Ppub.
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Fig. 4: Throughput and latency of Pub
in the LAN setting
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in the WAN setting
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CSTO transactions

VI. EVALUATION

In this section, we first introduce our implementation and
experimental setup, and then we present the evaluation results
as follows:

1) The overall performance of Galaxy under different ex-
perimental settings.

2) The BFT scalability and resilience of Galaxy under
different experimental settings.

3) The time costs of cryptographic primitives used in
Galaxy and its comparison with Cui et al’s scheme [23].

A. Implementation and Evaluation Setup

We implemented a prototype of Galaxy in Go. The network
module is implemented with a gRPC wrapper Gorums [53] to
invoke quorum calls. The consensus module is implemented
based on the event-driven HotStuff, and interacts with other
modules by providing interfaces such as message proposal,
verification and commitment. The storage module maintains
a blockchain and an in-memory key-value database. The
blockchain is an append-only log which records all the com-
mitted messages. The key-value database records the current
user subscriptions to facilitate the query of the broker, similar
to the world state in the Hyperledger Fabric [33]. In order to
reduce the storage overhead, a broker can choose to period-
ically prune the unwanted part or use checkpoint technology
in the append-only ledger. The crypto module implements
cryptographic primitives used by the consensus module and
the Pub/Sub module. We implement the adopted threshold
encryption scheme in Go and implements the bilinear group
operations with the bn256 package [54]. For the SSE scheme,
we used a dual secure SSE scheme [20] by extending and
wrapping the Clusion Java library [55].

We deployed the prototype on 16 Alibaba Cloud
ecs.c7.xlarge servers (each with 4 vCPU and 8GB memory).
We assume that different servers belong to different organi-
zations. In different experimental settings, a controller that
implements our shard assignment strategy evenly distributes
brokers across different shards.

B. Overall Performance

Performance of the data layer: First, to demonstrate
the performance of the data layer, we deployed a total of
128 brokers (8 brokers on each server) and 1280 clients (10

clients connecting to each broker). Brokers are divided into
4 shards (32 brokers per shard) and different shards run in
parallel. We chose to take the throughput and latency of the
publish (with SSE) operations as the performance metric and
we do it for two reasons: First, publish operations are more
frequent than subscribe operations in most scenarios. Second,
publish operations (with SSE) are more expensive than publish
(without SSE) and subscribe operations since brokers need to
invoke the SSE search primitive. As a result, using publish
(with SSE) as the performance metric can show the upper
limit of the performance of the system. We also emphasize
that Galaxy can achieve better performance when only part
of the messages in the system requires privacy protection.
In the following parts, we abbreviate the publish (with SSE)
operation as Pub operation.

We set the size of each pub operation to 128 bytes (in the
follow-up experiments, unless otherwise specified, we keep
the size of a single operation at 128 bytes). We conduct
the evaluation under two different network settings: LAN (3
Gbps bandwidth per server) and WAN (50Mbps bandwidth
per server). We also adjusted different batch sizes (16, 32,
64, 128) under each network setting, and the experimental
results are shown in Fig. 4 and Fig. 5. The results show
that when batch size = 128, the maximum throughput reaches
3994 ops/sec and 3047 ops/sec in LAN and WAN settings,
respectively. The peak throughput is lower and the average
latency is higher in the WAN, which is reasonable due to
the constrained bandwidth. In addition, the peak throughput
generally increases with the increase in batch size. However,
when the batch size reaches 128, the maximum throughput
no longer increases significantly and even decreases. This
is because the time spent waiting for a batch of messages
gradually exceeds the time cost of the consensus.

Performance of the governance layer: The performance
of the governance ledger is also tested. Since we assume the
governance ledger is a small-scale permissioned blockchain,
16 nodes (1 node on each server) and 80 clients (5 clients
for each node) are deployed and the LAN network setting
is adopted. We choose the throughput and latency of the
CSTO transaction as the performance metrics. Fig. 7 shows
the performance of the governance ledger under different
batch sizes. The peak throughput of the governance leader
reaches 19,323 ops/secs when batch size = 128, which is
significantly increased compared with the brokers at the data
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layer. In addition to having higher computing and bandwidth
resources, the implementation of governance leader removes
the Pub/Sub-related modules and only adds a lightweight smart
contract module, so the overhead is greatly reduced compared
with the broker shards at the data layer.

C. BFT Scalability and Resilience

Scalability: To get a view of the scalability of Galaxy, we
also evaluated the performance of a single shard with different
numbers of brokers. To ensure that the computing resource of
each node is equal, we still deploy 8 brokers on each server
and gradually increase the number of servers from 2 to 16.
We use the WAN network setting in this experiment. Fig. 6
shows the peak throughput and corresponding latency of a
single shard under different shard sizes. The result shows that
peak throughput decreases with the increase of the shard size,
which is reasonable because of the higher communication and
cryptography overhead. We also notice that the performance
decreases significantly when the shard size increases from 32
to 64 and the reason is that the bandwidth and the limited
computation resources of the servers have reached the bottle-
neck at this time. We suggest selecting the largest partition
size when the bottleneck is reached in the actual deployment
to increase the security of a single partition. In addition, since
all the shards in Glaxay run in parallel (except for possible
CSTO transactions), large-scale horizontal expansion can be
carried out by increasing the number of partitions when the
computing resources are sufficient and the governance ledger
does not reach the performance bottleneck.

Resilience: In this part, we show the resilience of the system
by comparing the peak throughput of the Pub operation under
the round-robin and the proposed CWA leader rotation algo-
rithm respectively. The experiment is carried out in a single
shard of 32 brokers (2 brokers on each server) under the WAN
setting. For the CWA algorithm, we set the proposer reputation
Rp = 10, the voter reputation Rv = 1, the delay parameter D =
5, the attenuation parameter α = 0.8, and the reputation upper
limit Rmax = 100. We simulated the two types of malicious
nodes respectively: crash node and withholding node. Fig.
8 and Fig. 9 show the peak throughput of the system when
the number of these two kinds of malicious nodes (denoted as
f ) increases. When f = 0, the peak throughput of the system

under the CWA algorithm decreases compared with the round-
robin because the CWA algorithm introduces more complex
computation. However, when the number of malicious nodes
increases, the CWA algorithm significantly outperforms the
round-robin. When f = 5, the CWA algorithm achieves about
4x and 2x peak throughput improvement over the round-robin
algorithm under the crash and withholding faults respectively.
When f = 10, the CWA algorithm outperforms the round-robin
by a factor of 6x and 4x.

D. Privacy-Preserving Computation Cost

In this section, we demonstrate the time cost of the cryp-
tographic primitives used by Galaxy. For each cryptographic
primitive, we pick the average time consumption of 100 exper-
iments. For the secret key sharing phase, we demonstrate the
time cost of different operations under different combinations
of n and t. The secret keys to be shared are two 32 bytes ran-
dom string used for SSE and AES. For the encrypted Pub/Sub
phase, we compare our scheme (denoted by Operation-G)
with Cui et al.’s scheme [23] (denoted by Operation-C). The
privacy-preserving Pub/Sub scheme proposed by Cui et al.
encrypts the subscription and publish header based on an SSE
scheme SUISE [56], and the publish payload is encrypted
based on a lightweight KP-ABE scheme [57]. For the sake
of fairness, we implement the SUISE scheme in Java and the
KP-ABE scheme in Go. We adopt the cryptographic primitives
and data structures provided by the default Java libraries to
implement SUISE, which is consistent with the original paper
[56]. For the KP-ABE scheme, we implement the pairing-
based cryptographic primitives with a PBC Go Wrapper [58].
Both our scheme and Cui et al.’s scheme utilize HMAC-
SHA256 and AES-CTR as basic building blocks, and each
topic is a 5-byte random string.

Secret Key Sharing: First, we show the time cost of thresh-
old encryption primitives in the secret key sharing phase. Fig.
10(a) shows the time cost of Encrypt, Decrypt and Combine
operations under different combinations of the total number
of shares (denoted by n) and the threshold (denoted by t). We
have considered the costs of IsValid and ShareVerify operations
as part of the Decrypt and Combine operations, respectively.
The evaluation result shows that the time consumption of
Combine increases with the number of n and t and is about
98.7 ms when n = 128 and t = 43. The time costs of Encrypt
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Fig. 10: Time cost of cryptographic primitives

and Decrypt are about 6 ms and 37 ms, which are unrelated to
n and t. This overhead is acceptable since the network size of
the governance ledger is usually small and the key publication
transactions are not frequent in practice. In addition, although
our scheme requires the secret key sharing phase to share the
symmetric keys compared with Cui et al.’s scheme, we avoid
the need for the centralized TA in Cui et al.’s scheme, and
the cost of our key sharing phase can be amortized during
multiple Pub/Sub processes if the keys is not changed every
time.

InsertToken and SearchToken Generation: InsertToken
and SearchToken operations are used by clients to encrypt
the subscriptions and publication headers respectively. Fig.
10(b) demonstrates the time required for generating the insert
token and the search token. In this experiment, the number
of topics varies from 10 to 100 (the number of topics is
less than 20 in most cases according to the industry-standard
benchmark [18]). Since the SSE scheme adopted by Cui et
al. does not offer a special setup operation, we compared
the InsertToken operation instead of the Setup operation for
subscription encryption. For the generation of InsertToken,
both our and Cui et al.’s schemes show a linear growth with
the number of topics. Our scheme has lightly more expensive
costs on the InsertToken operation because the SSE scheme
adopted by Galaxy involves more complex data structures
in generating InsertToken. However, our scheme provides a
higher level of security against persistent advertisement and
snapshot advertisement. The cost of generating SearchToken
in our scheme is significantly less than that in Cui et al.’s
scheme, and it is independent of the number of topics. When
the number of topics is 100, the time cost of SearchToken
in our scheme is reduced by 97.6% compared to Cui et al.’s
scheme.

Payload Encryption and Decryption: Payload Encryption
and Decryption operations are used by clients to encrypt
and decrypt the publication payload. Fig. 10(c) shows the
encryption and decryption time of the publication payload.
Both schemes show an approximate linear growth trend. In this
experiment, we fix the number of attributes for the KP-ABE
scheme to 20, which is the same as the setting in the Cui et al.’s
paper. In fact, the AES encryption and decryption operation
is part of the lightweight KP-ABE scheme adopted by Cui et
al.’s scheme, so our scheme has less overhead at any time,
especially when encrypting a small-size payload (the payload

size is usually less than 1MB according to the experimental
settings of some industrial deployed systems [7], [10]). When
the payload size is 1 MB, the Encryption and Decryption in
our scheme take up to 2.06ms and 1.91ms, which is reduced by
89.4% and 45.7% compared to Cui et al.’s scheme respectively.

Insert and Search: Insert and Search operations are used
by brokers to update the encrypted subscriptions and perform
encrypted Pub/Sub matching respectively. Fig. 10(d) shows
the time needed for the Insert and Search operations at the
brokers. For the Search operation, Cui et al’s scheme shows
a significant increase with the number of topics, because
the topics in the experiment are randomly generated and the
index containing previously searched words in their scheme
could not be used. Other operations present almost negligible
overhead independent of the number of topics. When the
number of topics is 100, the Search operation takes up to
438.2µs in Cui et al.’s scheme while our scheme takes only
14.9µs, reducing the overhead by 96.6%.

VII. CONCLUSION

In this paper, we present Galaxy, a blockchain-based
Pub/Sub IoT data sharing framework. While maintaining the
asynchrony, decoupling and one-to-many advantages of the
Pub/Sub paradigm, Galaxy further addresses the two major
challenges of applying a Pub/Sub system to the IoT: Byzantine
faults and privacy. In order to address the Byzantine faults,
Galaxy realizes the tradeoff between scalability and safety
through a partial-random shard assignment strategy, achieves
a BFT Pub/Sub workflow by introducing the streamlined
BFT consensus, and adopts a CWA leader rotation algorithm
to avoid frequent leader failures. In order to protect IoT
data privacy, Galaxy realizes the secret sharing of symmet-
ric keys through threshold encryption and provides efficient
secret matching of publications and subscriptions based on
symmetric searchable encryption. We implement a prototype
of Galaxy and conduct extensive evaluation from various
dimensions. The results demonstrate that Galaxy exhibits good
performance and scalability in different experimental settings
while also boasting reduced cryptographic computational over-
head in comparison to a representative relative work.
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