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Abstract. Nowadays, the scale of business data is expanding at an un-
precedented rate. To cater to the needs of large businesses, data center
networks (DCNs) have been widely deployed and are continuing to ex-
pand. However, the influx of large-scale concurrent flows into DCNs of-
ten results in network congestion due to the concurrent competition for
resources. While existing load balancing mechanisms can handle concur-
rent competition, they often do so at the cost of time. As a result, there
is currently no ideal solution that effectively addresses both time con-
sumption and concurrent competition issues. In this paper, we present a
novel load balancing solution called FaCa, which runs on the host-end in
a completely software-based manner. FaCa incorporates Inband Network
Telemetry (INT), leveraging traffic transmission within the network to
swiftly obtain a partial global view of network load. Additionally, we
propose the Flowing&Jumping algorithm to mitigate concurrent path
competition by introducing an element of randomness to load balancing
process. FaCa is easy to deploy and has demonstrated superior perfor-
mance compared to other mechanisms. Our evaluation on production
DCN reveals that FaCa incurs minimal additional time overhead while
achieving better load balancing results compared to existing approaches.
Specifically, it resulted in a 14.28% reduction in congestion and a 22.5%
increase in host throughput.
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1 Introduction

Given the rapid expansion of the Internet, the volume of generated data has
reached unprecedented levels, placing significant strain on data processing capa-
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bilities. According to a report by the International Data Corporation (IDC)[34],
the total volume of data is projected to reach 163ZB until 2025. To effectively
handle this data pressure, enterprises have been establishing high-performance
computing (HPC) clusters within their data center networks (DCNs). To opti-
mize the performance of HPC clusters, researchers have developed high-speed
communication technologies, such as the All-Reduce[27] communication mode, to
enhance the performance of HPC clusters. With the consideration of reliability,
DCN also adopts multi-path design to connect hosts, along with interconnection
architectures such as the Clos architecture[5] in networking. Based on existing
resources, the requirement for an efficient load balancing method in DCNs is ur-
gent to enhance overall performance. Nevertheless, the majority of existing load
balancing methods are primarily designed for conventional cloud-scale networks
and might not be well suited for DCNs with HPC clusters. This is due to the
unique characteristics of DCNs with HPC clusters, which differ from traditional
networks and necessitate specialized load balancing approaches[16]. One of the
challenges in load balancing for DCNs is the presence of concurrent flows. In a
DCN, when multiple hosts initiate communications simultaneously, a significant
volume of data is concurrently transmitted within the network. These concurrent
flows exhibit characteristics such as simultaneous generation, partial inclusion of
large flows, and bursts. Existing load balancing algorithms often face challenges
in effectively managing such flows.

The load balancing methods can be categorized into two types: central-
ized and distributed. The centralized mechanism[3, 10, 16, 30, 39, 38] collects
network information periodically to calculate globally optimal load balancing
strategies. However, it experiences delays due to the central controller wait-
ing for and retrieving information from network devices. This delay significantly
slows down the load balancing process, especially in DCNs with concurrent flows.
The other approach is based on a distributed method. Some of them focus on
hardware upgrades such as Ananta[28], which upgrades multiplexers (Mux), and
SilkRoad[24], which utilizes load balancing ASICs. However, these designs re-
quire costly development of dedicated load balancing hardware, limiting their
adoption in DCNs.

The most common distributed solutions[9, 11–14, 18, 19, 26, 32, 33, 36] focus
on strategies for achieving load balancing by leveraging existing devices, such
as programmable switches[12] and back-end servers[26]. This type of approach
selects the path with the lowest load for distributing elephant flows, but it over-
looks the issue of "concurrency competition". When two nodes simultaneously
detect the same path with the lowest load, conflicts arise on shared links when
both nodes transmit traffic concurrently. This leads to a significantly higher
load on the common link compared to other links and creates the potential for
network congestion.

Designing load balancing for DCN is a challenging task that involves bal-
ancing fast reaction and competition avoidance while preserving network
performance. Collecting network load information typically requires communica-
tion between central controllers and remote network devices, which often incurs



≥ 1 RTTs[3, 30, 38, 39]. Load balancing scheduling introduces a time delay that
impacts the timeliness of the mechanism. In a distributed algorithm, nodes re-
ceive identical network load information within the same network environment.
This can lead to nodes making identical scheduling decisions, resulting in con-
current flows competing for bandwidth on shared links and causing network
congestion.

In this paper, we introduce FaCa, a load balancing solution that addresses
the aforementioned problems. FaCa utilizes In-band Network Telemetry (INT) to
quickly respond to network imbalance by leveraging network-transmitted pack-
ets to probe real-time network load without additional time consumption. In
addition, we propose Flowing&Jumping, a distributed load balancing algorithm
that mitigates concurrent competition. Flowing&Jumping schedules flows in a
manner resembling water flow and introduces random "jump" to prevent path
competition. This simple integration of randomness effectively avoids conflicts.
Furthermore, FaCa is designed as software-based and built upon the founda-
tion of Equal-Cost Multi-Path (ECMP)[14], which ensures easy deployment and
will be explained in Section IV. The main contributions of this paper are as
follows:

– We identify and highlight the existing problems in load balancing that can
potentially diminish network performance.

– We propose FaCa, a load balancing method that utilizes INT to enable quick
congestion reaction, and introduces Flowing&Jumping to mitigate concur-
rent competition.

– We develop a prototype of FaCa within a production DCN and carry out
performance evaluations. The findings showcase that FaCa achieved a sub-
stantial 22.5% increase in throughput and a noteworthy 14.28% reduction in
congestion.

The paper is structured as follows. In Section 2, we introduce prior research
on network load balancing. In Section 3, we identifie existing issues that degrade
network performance. In Section 4, we present insights on resilience and concur-
rent competition. In Section 5, we explain the load balancing system FaCa, in-
cluding its modular introduction. In Section 6, we discuss the concrete challenges
and implementation environment of FaCa. Finally, we prototype and evaluate
FaCa’s performance in Section 7 and conclude in Section 8.

2 Related Work

This section briefly introduces existing load balancing methods and their limita-
tions. Load balancing approaches can be categorized into two groups: centralized
and distributed methods.

2.1 Centralized Load Balancing

Centralized load balancing mechanisms typically employ logically centralized
controllers to gather information on links (such as bandwidth, utilization, etc.)



and switches (including buffer size, queue length, etc.). Using this comprehensive
network information, the centralized controllers distribute flows to less utilized
paths.

Mahout [10] improves on Hedera by using SDN technology to reduce the
overhead of identifying elephant flows. It also brings about time consumption
of collecting network information. Freeway[39] divides links into low-latency ori-
ented links (LOL) and high-throughput orient links (HOL) by estimating the
link utilization. Different from the methods that distribute flows based on the
amount of bytes, FDALB[38] divides flows into long-lived flows and short-lived
flows. For long-lived flows, FDALB marks them on end-hosts and globally sched-
ules such flows with a greedy and polling algorithm. For short-lived flows, it
simply continues to use ECMP. MicroTE[3] utilizes OpenFlow DCN to forecast
traffic patterns. It classifies flows into predictable and unpredictable categories.
Predictable flows are assigned load balancing tasks by centralized controllers,
while unpredictable flows make use of the default balancing mechanisms of the
network, such as ECMP and WCMP [45]. Fastpass[30] achieves load balancing
at the packet level by determining transmission time slots and paths for each
packet using centralized controllers.

While centralized methods are theoretically capable of achieving optimal per-
formance, the practical implementation is hindered by the time-consuming pro-
cess of information collection and the overhead of redundant communication.
Additionally, the fixed interval at which information is collected limits the abil-
ity to quickly respond to changes in network topology due to failures or hardware
restarts. In real-world scenarios, centralized methods often struggle with coarse-
grained scheduling, making it challenging to meet the desired level of accuracy
in load balancing mechanisms.

2.2 Distributed Load Balancing

Distributed mechanisms are locally deployed on hosts and switches, which of-
ten make decisions based on local information, resulting in much faster reaction
compared to centralized mechanisms. Nevertheless, they are not immune to com-
petition issues.

As the first method to introduce Mux, Ananta[28] designs a multi-layer struc-
ture. It provides ECMP in the third layer and schedules connections in the
forth layer. Duet[12] manages to develop load balancing with the API on pro-
grammable switches and combines it with Mux to provide a resilience to net-
work failures. Silkroad[24] addresses the shortcomings of stateful load balancing
by presenting a stateless solution based on switching ASIC development. This
approach offloads load balancing from switches and leverages dedicated hard-
ware for efficient and high-performance load balancing. However, the deploy-
ment overhead and scalability remain as challenges. FLARE[18] introduces the
load balancing method called FLowlet and highlights a characteristic of TCP.
It states that if the interval between sending two packets is greater than the
delay of parallel paths, packet transportation on these paths will not cause out-
of-order problems. Building upon the concept of Flowlet, numerous works have



been developed. CONGA[2] addresses the limitations of local congestion-aware
load balancing in asymmetric network topologies and simplifies the complexity
by introducing a leaf-to-leaf mechanism. LetFlow[36] explores the relationship
between sub-flows and path load, and introduces a Markov model to demon-
strate the high performance of Flowlet in multi-path load balancing. MLAB[11]
proposes a modularized solution for multi-path DCN. In essence, MLAB prac-
tically implements Flowlet within a Fat-Tree topology. OLTEANU[26] makes
use of back-end servers to offload connection states from switches, which has
inspired our work to maintain the state on hosts instead of switches. However,
in OLTEANU, severs receive a significant number of packets that belong to
other connections, and this redundancy hinders performance. Google proposes
PLB[32], which is built on the basis of ECMP/WCMP. It detects whether it is
experiencing congestion through the TCP protocol with a threshold judgment
and selects an available path to redirect the connection by assigning a new flow
label for subsequent outbound packets. Although it can mitigate switch link load
imbalance and reduce switch packet loss, it still lacks in concurrent competition.

Distributed load balancing mechanisms have the advantage of being able to
react quickly to congestion in DCNs. However, one of their challenges is the
potential for concurrent competition when blindly selecting the path with the
lowest load for distribution. This issue arises because distributed mechanisms of-
ten have access to only partial information about the network, which may results
in that multiple nodes simultaneously choose the same low-load path, leading
to congestion and performance degradation. The above are the problems with
existing load balancing work, some existing work[17, 6, 44] on network routing
and link failure recovery in DCN, has provided us with assistance in solving the
above problems.

3 Background

With substantial improvement of equipment performance, data center has the
ability to complete complex tasks, such as data storage[8, 42], distributed ma-
chine learning (DML)[20–22, 37, 7] and content distribution[4, 1, 29]. Meanwhile,
with the development of host performance, network performance increases as
well. However, the development of load balancing, as one of the factors impor-
tant to network performance, is still marking time. Despite its shortcomings,
ECMP has been a convenient and widely used balancing mechanism for a long
time. The state-of-the-art work comprehensively performs poorly.

Slow reaction. With the increasing scale of data and device access in DCNs,
network congestion has become a significant challenge. Simply increasing the
number of devices is not enough to alleviate congestion in large-scale networks.
The key to effective load balancing lies in the ability to quickly detect conges-
tion and react accordingly. However, centralized mechanisms used in traditional
load balancing approaches rely on periodic information collection from the entire
network. This results in delayed response times to congestion events and longer
information collection times, especially in rapidly expanding network environ-



ments. Both factors contribute to wasted time and ultimately degrade network
performance.

High concurrent network environment. DCN is inundated with con-
current flows. Numerous applications operate simultaneously on the network,
resulting in a substantial volume of data transmission at all times. With the
prevalence of massive businesses running on DCN, concurrency has become a
common occurrence. Surveys about traffic patterns in data center[40, 35, 43] in-
dicate that burst flows and concurrent competition often lead to congestion and
serious packet loss. However, concurrent traffic has received relatively limited
research attention. The focus on achieving optimal balancing often poses a chal-
lenge in effectively addressing concurrent competition. Assume that load bal-
ancing mechanism always chooses a minimum load path for each flow and what
would happen? Most of the flows would be scheduled into a minority of paths!
We call it concurrent path competition. The competition can cause even more
serious unbalance and congestion. Introducing a centralized scheduler could po-
tentially be helpful, but the slow reaction time of the scheduler can degrade the
performance of DCN.

4 Motivation

In this section, we introduce the principle of ECMP and discuss its shortcomings.
We also highlight a key insight using an example.

4.1 Why Not ECMP?

ECMP is considered the most adaptable load balancing solution in DCNs, which
operates on a hop-by-hop basis and uses flow-based load balancing. When there
are multiple links available to reach the same destination address, ECMP em-
ploys a specific strategy (such as Hash, Round robin, etc.) to distribute the flow
across these paths[15]. It avoids the limitation of using a single link and im-
proves available bandwidth by distributing traffic across multiple links. ECMP
switches typically use the five-tuple of each data packet as a hash key and hash
it to a random path. Additionally, ECMP does not take into account the size
of flows, resulting in a rough flow scheduling based solely on hashing. This can
lead to "hash collisions", where long-lived large flows are mapped to the same
path, resulting in imbalances and congestion. Moreover, ECMP operates inde-
pendently on each switch without coordination, meaning that forwarding deci-
sions made in one switch are not influenced by those in other switches. Con-
sequently, ECMP’s lack of coordination between switches results in upstream
switches not considering the capacity of downstream switches. This can lead to
congestion when upstream switches send large flows that exceed the capacity of
downstream switches.

Indeed, ECMP has gained popularity in DCN due to its cost-effectiveness
and robustness, but it falls short in terms of network performance. To illustrate
this, we deploy a 2-layer Leaf-Spine[23] DCN architecture, where the hosts are



Fig. 1. Throughput "Drop" in DCN.

divided into two sides of the Clos network. Each side of the network sends flows
to the other side, allowing us to observe the limitations of ECMP in practice. We
evaluate the performance of ECMP in our DCN by measuring the max through-
put and the metric named "Drop" of switch ports and is recorded on one of the
layer-1 switches. The "Drop" represents the difference between the maximum
and minimum throughput, it helps evaluate the distribution of throughput. As
shown in Figure 1, as the number of flows increases, the maximum throughput
of the network tends to decrease. When the number of flows increases to 40,000,
the max throughput decreases down to almost a quarter. The drop in through-
put also indicates that the overall network performance is at a low level. The
fundamental factor is that ECMP is prone to collisions in a large concurrent
environment.

4.2 A Motivation Example

(a) Concurrent Competition (b) Competition Avoidance

Fig. 2. The Path Competition in ECMP.



Figure 2 depicts a DCN example that highlights the issue with ECMP and
the key insight of FaCa. Figure 2(a) and 2(b) show a topology with five switches.
Each blue line is the link between two switches and the number shows the capac-
ity of the link. Each arrow points to the traffic on the network and the numbers
on arrows show the amount of traffic. Switches S0 and S3 simultaneously send
traffic to switch S4 at a speed of 90Gbps. In Figure 2(a), switch S0 does not have
information about the amount of traffic being sent by switch S1. However, S0
knows that both paths to S4 have sufficient bandwidth to handle its own traffic.
With the simple ECMP, the traffic from switches S0 and S3 is evenly split and
distributed across the two links adjacent to them.

The initial load distribution appears to be balanced in terms of available
bandwidth on both paths. But when the network traffic from S0 and S1 arrive at
link S3 → S4 simultaneously, the traffic will exceed the capacity of the link, and
a competition also occurs. To address the potential congestion issue, a solution is
proposed where a portion of the traffic originating from S0 and S1 is redirected
to the other available path, as depicted in Figure 2(b). Certainly, implementing
such a solution requires access to network information in order to make informed
decisions about traffic redirection. The details of obtaining and utilizing network
information will be discussed in subsequent sections.

5 Design

The section presents the system design of FaCa, which is a modularized sys-
tem and consists of three parts: network probing, load estimates and balancing
decisions.

Fig. 3. System Design of FaCa.



5.1 Overview

FaCa implements all the parts on hosts and needs no changes on DCN. To
acquire the load information and mapping relationships between paths and five-
tuples, hosts send INT probe packets to each other. The information forms a
network load table and on this basis, FaCa estimates short-term network load
with Exponentially Weighted Moving-Average (EWMA). Derived by estimation,
hosts make a decision on flow schedule with the help of Flowing&Jumping.

5.2 Network model

We consider the network topology as G = (V,E), where V indicates the hosts and
Layer3 switches, and E indicates edges between them. The link from host/switch
i to host/switch j is simply denoted as ij. Pij is the set of paths between host
i and host j and P is the union of all different Pijs. A path pkij that connects
host i and host j is an orderly permutation of links. For instance, host i and
host j is connected by switch l, and then we can refer to it as pkij = (i, l, j).
The bandwidth of the path is denoted as Bk

ij . Note that, Bk
ij is the minimum

bandwidth of links that the path pkij traverses. Similarly, we use Dk
ij to denote

the delay of pkij . Fij is denoted as the set of flow demands from host i to host j
and f c

ij is the c-th flow demand in Fij , F is the set of all different Fij .

5.3 Partly Global Vision with INT

Probe packets help hosts acquire a global vision of network status information
and this probe technique is INT. In the beginning, INT is used only under an
in-network way. We draw inspiration from the design concept of INT and suc-
cessfully implement it at the host end. Firstly, hosts encapsulate the business
packets into probe packets and send to other hosts which are the destinations of
these packets. When probe packets go through a switch, the switch adds infor-
mation at the end of the probe packets, including the network status information
(such as delay, bandwidth, etc.) and the path that the packet traverses. When
a host receives probe packets, it analyzes the information and updates it in the
network load table. Meanwhile, the host answers a copy of the probe packets
to the sender and parses them. Likewise, when the sender receives a response
from a probe packet, it initiates an analysis of the information and updates the
network status message table. Besides, INT only focuses on end-to-end path in-
formation, and every host builds up a "partly" global vision in this way. That
is, each host only has the bandwidth and delay of the path to the destination
host, rather than stores the information of the whole network, which reduces the
time to wait for the global convergence of the network. As shown in Section 4.2,
FaCa manages to be elastic to asymmetry with the global vision.

By obtaining the network status information in near real-time, as described
above, we can achieve faster response when congestion occurs in the network.
Compared to collecting information at regular intervals, this approach signifi-
cantly reduces the time required and allows for more efficient decision-making
processes.



5.4 Load Estimate

What FaCa gains is the delay and bandwidth of paths but it is far from path
load. FaCa introduces bandwidth-delay product (BDP) to describe path load.
BDP is formulated as follows:

βk
ij = Bk

ij ·Dk
ij (1)

where βk
ij is the BDP of path pkij . BDP measures the in-flight traffic and the

remaining maximum bandwidth of a path. Nevertheless, there is a little time
interval between updating a probe result and making a schedule decision. The
interval makes it inaccurate to describe the realistic path load with BDP in load
table. In the field of communication, EWMA is mainly used to estimate and
smooth the state parameters of the network. Consequently, FaCa introduces
EWMA to fill the gap and the estimation of load is formulated as follows:

Ek
ij(t) = αEk

ij(t−∆t) + (1− α)βk
ij (2)

where Ek
ij(t) is the estimation of BDP βk

ij at time t and ∆t is the time interval
between latest record update time and t. The E(t) in the algorithm is the set
of all Ek

ij(t) where i and j are different. The α is a fitting coefficient to control
the proportion of estimation and probe information, which is calculated by the
attenuation function model in Newton’s cooling law[25]. The specific formula is
as follows:

α = 1/ek∗∆t (3)

The e and k in the above formula are constants. With BDP and EWMA, FaCa
estimates load of paths makes a schedule decision.

5.5 Flowing&Jumping

Load balancing treats flows as running water and flows pour into the light load
path until there is no imbalance. In this process, two details are worth thinking.
Path Selection. FaCa is totally software-based and it seems hard to select
which path to transport the flow. In traditional network, routers decide routing
and it is transparent to hosts. The turning point appears in the layer 3 switches
that widely deployed in DCN. Switches schedule flows with a stable hashing
algorithm ECMP, and actually, there is a hidden relationship between paths
and five-tuple: every five-tuple maps to a path. The five-tuple of a probe packet
maps to the path it traverses and it is the basis of our load balancing path
selection. Just a modification to the source port in five-tuples is able to choose
a selected path between sources and destinations, which accomplishes routing
decision on host end.
Competition Avoidance. Numerous applications are running large and con-
current communications in DCN, such as database synchronization and DML.
Numerous hosts start large flows in the same time and select paths with light
load, and competition occurs. The main reason for concurrent competition is



Algorithm 1: Flowing&Jumping
Input: Paths P and Loads E(t), Flow Demands F
Output: Flow Demand Schedule Result

foreach Fij ∈ F in parallel do
while ∥Fij∥ > 0 do

randomly a select path pkij ;
while Ek−1

ij (t) > Ek
ij and Ek+1

ij (t) > Ek
ij do

select a flow from Fij , schedule to pkij ;
update Ek

ij and F k
ij ;

while Ek−1
ij (t) < Ek

ij(t) do
select a flow from Fij , schedule to pk−1

ij ;
update Ek

ij(t) and F k
ij ;

while Ek+1
ij (t) > Ek

ij(t) do
select flows from Fij , schedule to pk+1

ij ;
update Ek

ij(t) and F k
ij ;

that hosts are lack of the load balancing decisions from other hosts, and the
decision would never be known before it is taken into practice. And that is the
reason why concurrent competition is never considered in DCN load balancing.
A centralized controller decides the load balancing schedule uniformly. While in
DCN, it is not a perfect solution due to the hysteresis of centralization.

In this case, our solution is to sacrifice the "optimal" balancing in exchange
for competition avoidance through adding a little randomness. Algorithm 1 ex-
plains the main process of Flowing&Jumping. For flow demands from host i to j,
it randomly selects a path pkij , and compares it with the two adjacent paths (the
"adjacent" indicates continuous numbering). When pkij is the lightest load path,
flows are scheduled to it. While not, flows would be scheduled to the adjacent
paths with lighter load. Either way, the load of paths is not allowed to exceed the
adjacent ones. It seems like the water, which schedules flow demands to descend
to the sunken place. We add randomness by randomly select the preferable path
at every iteration, in case that flows are always scheduled to the lightest load
path and the algorithm turns back to an optimal load balancing.

To show the process of Flowing&Jumping more clearly, we illustrate an ex-
ample in Figure 4. It shows the balancing process from the perspective of a source
host, which it has flow demands to send to a destination host. The source host
links to eight paths and we number the paths from 0 to 7 with black number.
For convenience, we assume that size of every flow demand is one unit and the
size of bandwidth of each path is 10 units. At the beginning six flow demands
need to be scheduled and we randomly select path 1. Compared to the adjacent
paths, load of path 1 is less than path 0 but greater than path 2. Hence, we
schedule flows to path 2 until load of path 2 reaches the level of path 1. Again,
with remaining flow demands, we randomly select another path 6 and compare



Fig. 4. An example of Flowing&Jumping. Each bar indicates a path and the black
number below the bar denotes the rank of path. Above path numbers, red bars are the
load of the paths and light yellow bars are the bandwidths. On the bottom of bars,
the number with white color denotes the specific value of load. The solid box with flow
demands points to the path randomly selected and the two dashed boxes separately
points to flowing paths and jumping paths.

with the adjacent paths 5 and 7, while load of path 6 is higher than the that of
other two paths. Thus, we schedule flows to path 5 and 7 until their loads reach
the level of path 6. At this time flow demands are completely scheduled out, and
the algorithm process stops.

Throughout this process, there is a little trick on random selection: treat it
like a ring. In Figure 4, when selecting the next random path after path 1, there
is a random number 61. While the total amount of paths are 8, we select path
(61+1) mod 8 = 6 as the next one. The modular calculation makes the path tail
to head. Similarly, the adjacent paths of path 7 is (7+1) mod 8 = 0 and (7-1)
mod 8 = 6. It balances the situation on head paths and tail paths.

6 Implementation

This section describes the deployment environment of FaCa and the challenges
encountered in implementing it.

6.1 Productive Experiment Setting

We utilize a production cluster in DCN operating under Clos topology, as shown
in Figure 5. The Clos network comprises three layers, namely two access layers
(S0, S3) and a core layer (S1). There are 16 switches in the core layer, and in each
access layer, there are 8 switches, with one of them connecting five hosts, and the
links between the hosts and S0 are unique. Specifically, each host is equipped with
multiple RDMA[41] NICs(RNIC), and each port of the S0 switches is uniquely
connected to one RNIC. The connection between the access layer and the core
layer is fully connected. We develop a prototype based on perftest, which is a
RDMA performance test tool and used to evaluate on this DCN.

Ideally, the Clos network can tolerate the whole traffic from hosts under the
same S0 and forward it to the hosts under S3. However, once unbalance happens
on the out ports of S0, it is possible to cause a congestion. We design a simple



Fig. 5. Production Sub-Network(Clos) Topology.

perftest evaluation, which ten RNICs under one S0 switch send elephant flows
to hosts under S3. And details are listed as follows:
Flow Setting. We choose RNICs under one S0 to send and RNICs under S3
to receive. Each RNIC sends two flows and initial sending rate of each flow is
100Gbps. For each flow we distribute enough buffer on both senders and receivers
to ensure no congestion are caused by out of buffer.
IP Pair. We limit that one RNIC uniquely connects to another RNIC. For the
reason that every RNIC has the unique IP, we call the connection "IP Pair".
Such design is able to prevent incast[46] from disturbing experiment results.
Data Collection. Before flows run on the DCN, connection establishment con-
sumes a little bandwidth. Flows last until the end of experiments and therefore,
measurement indexes would be stable after establishment. Consequently, we col-
lect experiment data when the load of paths is stable.

6.2 Implementation Challenges

The first challenge is exploration probe. INT only detects the load of switches and
paths of probe packets, while information of five-tuples is still unknown. FaCa
acquires it through hook function, which is able to probe flow information from
system kernel. Note that, although RDMA is kernel-bypass, it still needs TCP
or UDP to exchange connection information before establishing it. Therefore, it
is easy to hook connection information in establishment with a daemon.

It requires extra work to provide a software-based load balancing that sup-
ports for lightweight implementation. Our solution is to develop a communica-
tion library that provides Flowing&Jumping on hosts. Based on InfiniBand(IB)
Verbs[31], the establishment of RDMA connection covers several steps and the
five-tuple information is hidden in Queue Pair(QP) modification. In establish-
ment stage, QP status goes through the following process: RESET → INIT
→ Ready To Receive(RTR) → Ready to Send(RTS). Between INIT and RTR,



senders and receivers exchange the information of five-tuple. Consequently, FaCa
updates the five-tuple between the two stages and manages to control routing on
hosts. In this case, whenever business developers intend to implement FaCa, the
only overhead is making communication library to establish connections. The fi-
nal challenge is building Inter-Process Communication(IPC) between probe dae-
mon and Flowing&Jumping. We achieve it by reader-writer model and support
an asynchronous communication.

7 Evaluation

This section focuses on the performance of FaCa in productive DCN and micro-
benchmark scenarios. First, we compared the performance of ECMP with FaCa
in terms of throughput, mainly on S0 switch port and between IP pairs. Then,
we compared their congestion in different experiments to verify FaCa’s ability to
handle concurrent competition. Finally, to better demonstrate our performance,
we add comparison with PLB and WCMP. Due to the limitations of imple-
menting PLB on a productive environment, we conducted a micro-benchmark
simulation for experiments.

7.1 Throughput Performance

(a) Path Throughput (b) Throughput CDF

Fig. 6. Throughput of one S0 switch.

As shown in Figure 6, we measure the throughput of ten out ports in one
of the S0 switches which receives totally 10×100Gbps flows and forwards to S1
switches. The red bars in Figure 6(a) show that ECMP forwards at least four
100Gbps flows to out port 10, the same to port 9. It leads to an unbalanced on
port 0-4, while port 0 sends nearly no traffic. This asymmetric network resources
causes unbalance and performance down. The situation in FaCa achieves a bet-
ter balance. In the coarse-grained elephant flows situation, Flowing&Jumping



schedules two flows to each path. More precisely, Flowing&Jumping schedules
the flows to go through different output ports of S0 on average. If we use the
standard deviation of throughput to evaluate the balance performance, the value
in ECMP is 148.06, while in FaCa, it is 2.96, which represents an improvement
of almost 49 times.

As shown in Figure 6(b), to make flow distribution more distinct, we col-
lected the throughput data and plotted it as a Cumulative Distribution Func-
tion(CDF). The red curve illustrates that the flow distribution in ECMP is quite
dispersed, whereas the green curve depicts a denser flow distribution in FaCa,
indicating better load balancing performance. However, due to flow collisions,
the total throughput of ECMP is slightly lower than that of FaCa. Note that
the experiment is based on elephant flows, and thus in business scenarios, the
flow collision problem is likely to be less noticeable when the number of mouse
flows is high. Additionally, because FaCa is based on ECMP, it may also achieve
slightly higher performance.

During the experiment, we also measured the throughput of IP pairs. To the
best of our knowledge, the imbalance problem in switches does not always result
in a performance degradation on hosts. This is the reason why improvements
in load balancing often do not significantly enhance network performance. As

(a) IP Pair Throughput (b) Throughput CDF

Fig. 7. Throughput of IP Pairs.

shown in Figure 7(a), performance difference on host RNIC is not as distinct as
that on S0 out ports. The flow collision and unbalance on ECMP finally lead
to a performance downgrade in host, as the red bars show. Compared to the
throughput of ECMP, FaCa maintains a load-balanced performance and helps
RNICs achieve full bandwidth. Precisely, the throughput "gap" of RNICs in
FaCa load balancing is 6Gbps (191Gbps vs 197Gbps), while that in ECMP is
38Gbps (160Gbps vs 198Gbps), which is almost 6.3 times improvement. Mean-
while, the standard deviation of throughput in ECMP is 13.61, while that in
FaCa is 1.78, which is a 7.08 times improvement. It is much less compared to
the improvement in switches.



Similar to the performance in switches, FaCa achieves a denser CDF curve
than that in ECMP, as shown in 7(b). And the total throughput in FaCa is also
slightly higher than ECMP. Generally, the average of flow throughput in FaCa
outperforms that in ECMP with 22.5%.

7.2 Concurrent Competition

Simultaneously, we test the resilience to concurrent competition and illustrate
in Figure 8. Precisely, competition in ECMP is caused by hash collision rather
than concurrency. Nevertheless, ECMP is still an ideal baseline because the
comparison to ECMP directly reflects the improvement in production DCN for
the wide deployment of ECMP.

Fig. 8. Path competition in concurrent flows over twenty experiments.

In every experiment, we send persistent flows with random size in hosts and
then concurrently send temporary flows. We evaluate path competition resilience
by the proportion of the amount of competitive paths. In all congestion scenarios,
the congestion rate of Faca is lower than that of ECMP. On average, FaCa out-
performs ECMP with 5.88%. Associated with the improvement of throughput,
slightly path competition brings serious unbalance.

7.3 Micro-Benchmark

In order to better evaluate the performance of FaCa, we conduct a micro-
benchmark environment to compare it with some other methods. Our exper-
iment is simulated using a two-layer Leaf-spine DCN topology. The leaf layer
consisted of 16 switches with a capacity of 200Gbps, while the spine layer con-
sisted of 4 switches with a capacity of 380Gbps and 4 switches with a capacity
of 400Gbps. The switches in the access layer communicate with each other using
a point-to-point communication mode. In each iteration of the experiment, the
access switches simultaneously transmit fixed flows to their connected pairs.

In the scenario of continuously sending concurrent streams, we record all
the congested traffic on the core switch over a duration of 20 seconds. Figure



(a) Under different flow scale (b) Time

Fig. 9. Congestion on core switches.

9(b) shows the corresponding change trend. FaCa demonstrates significant im-
provements compared to other methods. Due to the emphasis on balance in
ECMP/WCMP, while we focus on randomness, the ECMP-based strategy can
exhibit slightly better performance than the latter method under the traffic scale
that the link can carry. However, this phenomenon gradually disappears as the
traffic increases, and FaCa become more evident, congestion in the network under
the FaCa increases at a slower rate compared to other methods. In the scenario
where all nodes send traffic evenly, it is possible for ECMP to appear more effi-
cient than PLB. However, although this scenario is not typically encountered in
practical network environments, it still proves the superiority of FaCa.

Additionally, we also compare the congestion rates of various methods under
different levels of sending traffic. Figure 9(a) displays the congestion rates of
each algorithm by increasing the size of concurrent streams. As the scale of con-
current streams continued to increase, ECMP and WCMP quickly experience
congestion, followed by PLB. FaCa can fully utilize lower-load links while avoid-
ing conflicts, thereby reducing the occurrence of congestion. Compared to evenly
balancing the utilization of all paths, the probability of congestion occurring is
much lower. Specifically, FaCa achieves a nearly 50% improvement in congestion
rate compared to ECMP, and a 31.47% improvement compared to PLB. These
results highlight the effectiveness of FaCa in mitigating network congestion.

8 Conclusion

In this paper, we address the primary challenges associated with implement-
ing load balancing methods on multi-node HPC cluster networks and introduce
FaCa as a solution. FaCa is designed for ease of implementation and is built
upon a software design approach, leveraging the widely deployed ECMP mecha-
nism as its foundation. By introducing INT probe technology, FaCa establishes a
partially global view of the network, reducing the time required for information
collection and enabling fast response to network congestion. To address concur-
rent path competition, FaCa introduces a load balancing algorithm called Flow-
ing&Jumping, which incorporates a small amount of randomness into the flow



scheduling process. Our evaluation demonstrates that FaCa achieves 14.28% re-
duction in network congestion and outperforms native ECMP by 22.5% in terms
of network throughput.
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