Dynamic Gradient Tailor for Non-L.I.D. Federated Learning

Jiachen Li
Beijing University of Posts and
Telecommunications

Xiangyang Gong
Beijing University of Posts and
Telecommunications

ABSTRACT

Federated learning (FL) has yielded impressive results in recent
years. But its effectiveness on non-independently and identically
distributed (non-ii.d) data remains challenging and the reasons are
also not fully studied. In this work, we disclosed the detrimental
gradient interference phenomenon on non-i.i.d FL, and proposed
the gradient similarity among clients is an key index which links
both non-i.i.d status and the global model performance. Building on
this observation, we proposed the Dynamic Gradient Tailor (DGT)
plugin to improve the FL convergence speed and performance on
non-i.i.d data by alleviate the harmful gradient interaction among
clients. DGT is a server side gradient optimization plugin that
encourages the uploaded gradients to get close to each others by
gradient rotation before federated aggregation. Experiments shows
the DGT plugin significantly improves the inference accuracy by
5% and achieves 6 times convergence speedup. Further experiment
proves that DGT can be easily combined with various mainstream
frameworks to further improve the performance on non-i.i.d data.

CCS CONCEPTS

« Computer systems organization — Client-server architectures.

KEYWORDS
Federated Learning, Non-i.i.d. Data, Gradient Calibration

1 INTRODUCTION

Deep neural networks (DNNs) with millions of parameters have
been proven to be outperformed by centralized training on mil-
lions of data aggregated from IoT devices, including sensors, mobile
devices, and smart vehicles [5, 6]. However, the growing demand
for privacy protection making it difficult to transfer IoT devices’
private data to the centralized server[9], a mass of data islands
hinder the development of high-performance models that driven
by big data. Federated learning (FL) [12] is a promising solution
that enables collaborative learning across devices without sharing
private data [15]. FL is a decentralized framework, client models
are collaboratively trained by communicating models or gradients
with the aid of a centralized federated server. By offloading model
upgrading processes to client devices, FL protects private data lo-
cally, eliminating the need of data uploading [9]. With the trend of
privacy protection, FL provides a promising approach for achiev-
ing high-performance model service while offering private data
protection.

“Correspondence to Yuchao Zhang

Yuchao Zhang*
Beijing University of Posts and
Telecommunications

Yiping Li
University of Washington

Wendong Wang
Beijing University of Posts and
Telecommunications

But there is no free lunch. Centralized training paradigm benefit
from having access to the entire dataset to ensures the optimization
objective’s consistency with the true distribution of global data
naturally. However, FL faces an unique challenge when dealing
with non-i.i.d data due to population or geopolitical factors. The
local data samples’ statistical properties may differ or correlated
across clients, causing the model trained on one client’s data to
perform poorly on other clients’ data. Traditional FL aggregate
clients knowledge by sum gradients or parameters from all clients
uniformly may caused slow convergence speed and performance
loss[24].

Thus, improve the FL effeciency on non-i.i.d data is a hot re-
search point in recent years, many research has demonstrated the
impact of non-i.i.d on convergence and proposed algorithms and
proposed many methods to improve the performance of non-i.i.d FL
[3]. But the root cause of non-i.i.d challenges is still a black-box and
correspondingly targeted optimization techniques are also absent.
In this paper, we attempt to peek into the black-box of the non-i.i.d
challenge. We first links the FL task and the multi-objective learn-
ing task, where the federated global model aims to optimize the
loss across all sub-task formulated by clients with non-i.i.d private
data and corresponding optimization planes. From this perspec-
tive, the FL performance is vitally effected by the correlation of
sub-task optimization objects. Different, even conflicting optimiza-
tion objects may cause detrimentally interacts among gradients to
be aggregated, further influence the global model upgrading. As
shown in 1, individually clients’ gradients represented by different
colors are aggregated to form the federated global model gradi-
ent. The different distribution among clients leading to gradients
detrimentally interference with each others hinders the conver-
gence process. Based on insights in MTL Researches that gradient
similarity gradients similarity enjoys more similar loss geometries
[22]. We further delve into the FL process and found that gradient
similarity among gradients to be aggregated also positive correlated
to the FL performance and the the degree of variation in client data
distribution, and evolves across the FL processes.

Naturally, an interesting question arises : can we enhance the
FL performance by deliberately encourage the similarity of
gradients to be aggregated on non-i.i.d setting?

According to this insight, we design a general plugin to enhance
the convergence speed and performance of non-iid FL by leverages
clients relatedness to set gradient similarity objectives and adap-
tively align gradients throughout the FL process, named DGT. The
overall FL framework with DGT plugin is shown in Figure 2 and
the procedure is illustrated in Algorithm 1. Similar to conventional
FL framework, to begin with global model parameters initialization

Figure

(@) (b)

Figure 1: The figure(a) illustrate the FL convergence process
on the non-i.i.d data, detrimental interaction among clients
leads to biased optimization directions and affects the step-
size unintentionally. The figure(b) shows the optimization
process of FL with gradient calibration, a desired gradient
calibration strategy alleviates detrimental gradient pairs and
diminishes contradictions gradient pairs, thereby accelerat-
ing convergence and improving performance.

and broadcasting to all clients. Next, clients update their private
model based on the fresh global model using their respective data.
After client model upgrade process, the accumulated gradients are
then sent to the federated server, and the global model parameters
are then updated accordingly for the following client broadcasting.

Server Execute g
‘DGT L@J_‘ J (1)

Client Execute]

Figure 2: High-level view of non-i.i.d FL with FGT plugin

But unlike the conventional FL frameworks that directly aggre-
gate client gradients into the global model. DGT plugin will calibrate
gradients to be upgraded on the federated server, and the calibrated
gradient is then used to update the federated global model. DGT
aims to minimize detrimental interactions in non-i.i.d FL by rotat-
ing the direction of uploaded gradients at the federated server. The
rotation of DGT is achieved by replaces the target gradient with a
vector consisting of the original gradient and the calibration target.
In DGT module the pre-aggregated optimization plan (POP) is pro-
posed as the calibration target which calculate by pre-aggregating
all other uploaded gradients. By introducing POP, the computation
overhead is restricted to O(n). Also to avoiding unacceptable time
overhead, DGT employs a parallel calibration mechanism, where

Jiachen Li, Yuchao Zhang, Yiping Li, Xiangyang Gong, and Wendong Wang

the calibration process relies only on the original gradient. Take
the advantages of both low communication and computation cost,
the DGT plugin can be easily deployed on the FL system with large
scale participator. Additionally, the DGT can be easily deploy on
different tasks. The calibration conditions, direction and the rota-
tion step size of calibration step are dynamically decided according
to the gradient similarity matrix during federated learning without
any handcraft hyper-parameter.

Algorithm 1 Federated Learning

1: Initialize global model parameters 6
2: for eachroundt=1to T do
3. Select K client devices
4 for each client i in selected clients do
5 Receive current global model parameters 0; from the
server
Receive local training data D;
Initialize client model with 6;
for each local epoch j = 1to E do
Update client model using local optimizer O;
10: end for
11: Compute local model updates A0; = 6; — 01
12: Send A0; to the server
13: end for
14: replace A9; with DGT(AB;) by applying the DGT module
15: Aggregate received model updates: Afygg = % ZlK: 1 AG;
16: Update global model parameters: 6741 = 0; + Afagg
17: end for
18: Output: Final global model parameters 6

Y % >

The main contributions of our work are as follows:

e We proposed Dynamic Gradient Transformer(DGT) to im-
prove the FL convergence speed and performance on non-
i.i.d data by deliberately encourage the similarity of gradients
to be aggregated on the federated server.

e The DGT plugin is a general plug-in that can be easily in-
tegrated with mainstream FL methods to further improve
the FL efficiency. Also, the DGT module is communication
and computation resource-friendly that can be deployed on
large-scale FL system.

o Experiments show that the DGT plugin achieves better pre-
diction performance and faster convergence speed than base-
line method on non-i.i.d data. Further, we confirmed intro-
duce GDT module in mainstream FL frameworks can further
improves the convergence speed by 2-3 times with 10%-20%
inference performance improvement, illustrated the general-
ity of the DGT module.

2 OBSERVATIONS

To answer the aforementioned questions, we conducted a compre-
hensive study to link the optimization trajectory similarity and the
performance of global model, and make the following observations.

(1) clients with more similariy private data distribution

enjoy similar loss geometries We control non-i.i.d setting
by manipulating the number of categories of private data

Dynamic Gradient Tailor for Non-1.1.D. Federated Learning

0123456780910111213141516171810 012345678 00NRBM5ETISL

(a) NOC=2 (b) NOC=4

(¢) NOC=6

a
8

o S—— , . N——
012345678 01000LD1516171E 012345678 50NRDEB6TBL

(d) NOC=8 (e) NOC=10

Figure 3: Gradient similarity matrix on different non-i.i.d setting, which control by the number of class (NOC) each client
aggregate data. It can be seen that gradient similarity among clients increases with client class.

in each client denoted as k € {2,4, 6,8, 10}. Figure 3 depicts
the optimization trajectory similarity among clients increase
with more categories share across clients, also as illustrated
in many researches that the number of shared categories
correlate positively with the global model performance.

(2) Gradient similarities evolve across training steps and
different across tasks. By analysis the gradient similarity
throughout the FL process. As shown in Figure4, we set a 300
round FL task with 20 clients, each client has data from two
categories and mark the gradient similarity in each 30 steps,
result shows the gradient similarities evolves throughout
the FL process on both MNIST and CIFAR-10 dataset, and
the variation of gradient similarity on different tasks is also
different.

(@) (b)

Figure 4: (a) and (b) shows the similarity of gradients to be
aggregated throughout the FL process on MNIST and CIFAR-
10 dataset. The gradient similarity of each round is measured
by averaging the cosine similarity of all pairs of gradients
during each round of aggregation.

Our analysis highlights the important role of loss geometries
similarity in non-i.i.d FL. With these points in mind, we next turn to
the design of how to adaptive encourage gradients to be aggregated
close to each others thereby enhence their similarity to improve
the FL performance.

3 BACKGROUND

Federated Learning (FL) enable models to be trained on decentral-
ized data while preserving privacy, making it ideal for the trend
of private data protection. However, previous studies have shown
that FL encounters challenges with non-i.i.d data, leading to slower
convergence speeds and poorer performance. In this section, we
introduce the basic concepts of FL and analyze the challenges pre-
sented by non-i.i.d data.

We outline a problem in which N categories are allocated in a
feature space X and label space Y in a federated system with K
participants. The global model aims to minimizes the weighted sum
loss across all clients while accounting for uneven data distribution
among them. Consequently, the objective function of the federated
global model is defined as :

N
1 nj
F(w) = Zl NS (wis) M
o represents the global model weights, n; denotes the number
of private data that client i contributes to S;, and f(w;S;) is the
loss function of the global model on the private dataset of the i-
th client. In client model training process, clients optimize their
private model based on the global model on private data. Thus, the

objective function of each client is defined as
1
fitws) =+ ;ﬂwi;xj, y)) (@

w; indicates the private model parameter of client i, and f(w;; xj, y;)
is the loss function of the i-th client’s private model on the j-th data
point. Further, clients perform private model updates based on their
own private datasets using optimization methods like stochastic
gradient descent (SGD) algorithm as follows:

=t ! o)

Wi

where 1 represents the learning rate, and Vf denotes i-th client’s
gradient at iteration ¢.

After the local update progress, clients uploads private model or
gradient to the federated server, and the federated server aggregates
the gradients to update the global model parameters as

Wre1 = Wi — Vi1
N n:
L
Vi =) Vit
£ n
i=1
w; denotes the current global model parameters, and V? aggrega-
tion of client gradients.

4 RELATED WORK

FL aims to solve the problem of joint training among locally stored
datasets due to data privacy and security concerns. FedAvg [14] is
the pioneering work in the field of FL, using SGD in local model
fine-tune and weighted aggregation according to the size of client
private dataset. However, the non-iid data among different clients

hinders the FL performance. To address this challenge, researchers
have proposed many methods to improve the FL algorithm. Starting
from the optimization process on the client side, FedProx [4] adds a
new Ly regularization term to the loss function of the local model to
control the difference between the local and global models. FedNova
[20] utilizes different optimizers and hyper-parameters for local
models to control the extent of updates during training and reduce
the diversity between devices. FedDFIA [21] adds a constraint of
the distribution feature to the loss function of the global model to
constrain the distance between local and global models. Fedmatch
[18] adds a low-noise regularization term to the global model so
that it can adapt to the changes of local data to some extent. Starting
from the server-side aggregation direction. FEDPNS [16] introduces
a new network architecture that excludes client models conflicting
with the global model during federated aggregation to control the
distance between local and global models and reduce the impact of
non-iid data on FL. MOCHA [7] integrates multiple objectives into
a unified framework to optimize multiple objectives in FL models
such as model accuracy, communication efficiency, and edge device
energy consumption.

As for the client selection and weighted aggregation mechanism.
Two new client selection criteria and a greedy client selection algo-
rithm is proposed to improve the federated performance on non-IID
clients [11]. FedRANK [2] introduces a global ranking mechanism
that sorts all users participating in FL according to some specific
rules, and adjusts the gradient updating contribution of each user
based on the user’s ranking information to eliminate the data dis-
tribution bias among users. HeteroFL [10] proposed heterogeneous
grouping, dynamic communication, and adaptive learning module
to improve the FL performance of non-IID data in heterogeneous
edge network environment. FedOpt [19] proposes a client selection
method based on optimization objectives to find a suitable subset
of clients to minimize the global loss. FedAvg-MSP [23] proposed
minimum contamination subset (MSP) and select clients that are
similar to the global distribution and have a significant impact on
the global objective function to participate in training.

From the perspective of personalized FL, ArFL [8] regards FL
as a multi-task learning problem. In the FL process, ArFL selects
a specific auxiliary task for each client that is closely related to
the client’s data, and obtains more information through this auxil-
iary task to improve the model’s performance. FedRep [1] views
multiple rounds of FL as a sequential decision-making process. By
repeating the training on a portion of the data at each round, it
reduces the uncertainty of client data and improve inference ac-
curacy, and improves model robustness and generalization ability.
Hermes[17] introduces personalized pruning and adaptive aggre-
gation. Personalized pruning enables each client to customize its
local model based on its own data distribution, and the adaptive
aggregation enables heterogeneous structure model aggregation.

5 DYNAMIC GRADIENT TAILOR

Based on the above insights. It is vital to design a gradient calibra-
tion plugin for the FL framework, which should meet the following
requirements:

(1) The plugin should enhancing the similarity of the gradients
to be aggregated and reducing detrimental interactions while

Jiachen Li, Yuchao Zhang, Yiping Li, Xiangyang Gong, and Wendong Wang

maintaining the strict privacy protection paradigm of con-
ventional FL framework, only model parameter and related
gradients transferred between clients and server .

(2) The plugin should adapt to the evolving gradient similar-
ity, various tasks and models. The key parameter should
be automatically decided according to the snapshot of the
FL environment without expert knowledge and handcraft
setting.

(3) Additional client-side computation, communication over-
head and time-cost introduced should be strictly limited to
facilitate the participation of devices with limited resources,
as well as limited server-side computational cost to enable
the large-scale deployment.

To fulfill these requirements, we first establish links between
the non-iid FL and multi-task learning (MTL) two research fields.
In the case of non-iid FL, the optimization task of client private
models also can be seen as different tasks, and the federated global
model needs to integrate knowledge of different clients to achieve
optimal performance at a global distribution which is similar to
shared parameters in multi-task learning aims to learn knowledge
from different tasks. Inspired by gradient optimization techniques
used in MTL, we propose the Dynamic Gradient Tailor (DGT). DGT
is a general FL plugin to minimize detrimental interactions and
encourage the gradient similarity by directly rotating the direction
of uploaded gradients at the federated server. The calibration para-
digm of DGT can be abstracted as DGT(gx) = a1 * gi + a2 - gj, that
is DGT replaces the original gradient g; with a vector consisting
of gy and g, where g; is the calibration target vector.

Within this rotation paradigm, the design of the calibration target
vector is crucial as it significantly influences the effectiveness of
calibration. Pairwise calibration is proposed in MTL where the
gradients of each task are calibrated towards the gradients of all
other tasks in a random order. However, we argue that this approach
has two drawbacks.

Firstly, Pairwise approach is not suitable for FL due to the poten-
tially massive number of participating clients in FL system, com-
pared to the limited number of tasks in MTL tasks. Applying pair-
wise calibration in FL framework requires calibrate each gradient to
be aggregated with all others individually, resulting in a computa-
tional complexity of O(n)? which is unacceptable. The unacceptable
computation overhead hinders the scalability of the FL framework
with the DGT plugin, making it inappropriate for deployment in FL
systems such as IoT federations, where a large number of clients are
participating. Secondly, the pairwise approach projects the original
gradients to the other uploaded gradients in random order, which
may result in conflicting calibration directions. Thereby introduces
uncertainty of the calibration performance. To overcome the above
two concern. We propose pre-aggregated optimization plan (POP)
as the projection target of DGT. Specifically, for each client k, DGT
first pre-aggregate all other uploaded gradients g; except for gj in
federated server to obtain the calibration target for client k. Subse-
quently, we employ the following formula to project the gradients

Dynamic Gradient Tailor for Non-1.1.D. Federated Learning

of client k onto the pre-aggregated calibration plane as

DGT(gx) = a1gi + az - POPy, (4)
K

POPL=) gj.j#k (5
Jj=1

By introducing POP, each client needs to be calibrated only once,
thus the computation overhead is significantly reduced from O(n)?
to O(n), where n is the number of FL participants. Therefore, in
terms of computational overhead, DGT plugin does not requires
additional client-side computational overhead, thus can be well
deployed on FL systems with a large number of weakly-resourced
devices, and the computational overhead on the server-side is also
acceptable, in particular federated servers tend to be server devices
with high computing power. Meanwhile, the certainty of the cali-
bration performance is improved by projecting the original gradient
toward the POP representing the direction of the average gradient
of the other clients. In terms of communication overhead, the pro-
cess of calibrated projection of DGT relies only on the gradient to
be aggregated on the server side, thus does not introduce additional
communication overhead. It is also worth noting that all clients un-
dergo gradient calibration with DGT module in parallel. Specifically,
the calibration process of each client is independent with the others,
thus the time cost introduced by the DGT will not increase linearly
with the number of FL clients. Above all, the acceptable server-side
computational and time cost and zero client-side cost allows DGT
plugin to be deployed in large-scale client FL applications.

Utilizing the POP-based calibration paradigm, we fixed a1 = 1
and by applying Law of Sines in the plane of g;. and POPy, and we
further solve for the value of az and derive the calibrated gradient
of client k as

DGT(gk) =gy + a2 X POPy, 6)
POP/1 — (Pk)? — Pg\/1 - (POP;)?
[IPOP||N1 = (POPy)?

To adapt to different tasks, FL models and the evolving gradi-
ent similarities during training, we utilize the information about
changes in gradient similarity matrix to determine if calibration is
necessary. We maintain a historical gradient similarity baseline (Dz
for each client, which represents the similarity between the client
and the POP before, forming an N X N gradient similarity matrix
throughout the FL process. The similarity baseline is updated in
each FL step dynamically by employing a sliding average of their
historical gradient similarities as

™

az = ||gill

of =a- 0l +(1-a) o (8)

where <I>Itc is measured by cosine similarity as CI)]tC = WTO;IZH
and initialized with 0 at the beginning of the FL process. With the
help of similarity baselines, gradient of client k will be calibrated
if the gradient similarity is decreading in the current round which
can be formalized as ®¢ < (Dz_l. Decreasing similarity indicates
that the difference between the optimization direction of client
k and the others is gradually increasing. Conversely, gradient k
will be aggregate directly without calibration because the gradient
direction is gradually approaching the POP.

Algorithm 2 Procedure of DGT

Input: Number of parties N, uploaded gradients g K =
{1,2,..,K}

Output: Calibrated Gradient to be aggregated DGT (gi)
1: POP). « pre-aggregated gradients of other clients by eq.5
2 @ « CosineSimilarity(gx, POPy)
5 if @ < @] then

_ POP\1—(®4)2 0 \1- (POPy)2

+ o a= ol = pop W rom?

DGT(gk) =grta- POPk

: end if

: CI>£ « update similarity baseline of client k by eq.8

: return DGT(g)

o N o W

The process of the DGT module is illustrated in Algorithm 2. To
begin with a given client k and the uploaded gradient denote gy.
DGT first compute the pre-aggregated calibration target plane for
the client POPy with Equation 5. Next, DGT measures the gradient
similarity <I>/tC of g;. and POPy, and compared with the similarity
baseline CI)Z to decide if g needs to be calibrate. If so, DGT calibrate
gi by applying Equation 7 and the calibrated gradient DGT (g)
will be returned for subsequent federated aggregation. Otherwise,
the raw gradient g; will be returned directly without alteration. In
the end of DGT, the similarity baseline of client k is rebuild with
the fresh (IJItc with equation 8 no matter if calibration performed.

6 EXPERIMENTS

We first verify the performance and applicability of the DGT in the
this session. We first validate the DGT with a classic FL framework
Fedavg[13] on two simulated non-i.i.d datasets to verify the perfor-
mance improvement of DGT on different tasks. Further, we combine
DGT with other baselines including Fedprox and Scaffold to verify
the DGT plugin can be easily combined to the different mainstream
FL frameworks to improves the performance on non-i.i.d data.

6.1 System, Non-iid Simulation, and Model

All experiments were implemented in TensorFlow 2.0 running on
an AWS server equipped with an Intel Xeon E5-2630@2.6GHz and
Tesla-T4 GPU. The FL system comprised 20 clients, and the training
process lasted for 300 rounds. To increase the credibility of the
conclusions, each experiment was repeated ten times. The global
model was randomly initialized, with a batch size of 256 and 1 epoch
for the local model training. To simulate the non-i.i.d setting, client’s
private data are belonging to two randomly assigned categories.
The client and server models in the federated system used the
same three-layer CNN network structure for MNIST and CIFAR-10
dataset.

6.2 Performance of the DGT plugin

As illustrated in Figure5 (a) and (b), introducing DGT on the top of
the baseline framework significantly enhances both convergence
speed and performance. On MNSIT, CIFAR-10, and Fashion-MNIST
datasets, the introduction of the DGT plugin improves the conver-
gence speed of the federated global model by 2X, 3X, and 5X, while

also improving the inference accuracy of global performance by
5%, 10%, and 15%.

We believe that the above improvement stems from the DGT plu-
gin, which effectively mitigates harmful interactions and enhances
the similarity of gradients to be aggregated, thereby leading to a
convergence process that aligns with the sub-objective optimization
planes of multiple clients. To further explain the effectiveness of the
DGT plugin, we analyzed the changes in similarity of aggregated
client gradients on all four datasets. And highlights the impact of
DGT plugin to gradients to be aggregated. As shown in Figure 5
(c) and (d), DGT improves the similarity of client gradients to be
aggregated throughout the FL process on all three datasets, while
noticeably alleviate the detrimental interaction gradient pair with
an inner product less than zero.

Secondly, we compared FedAvg-DGT with two widely-used fed-
erated learning frameworks, FedProx and Scaffold. The results
clearly indicate that introducing DGT into the classical FedAvg
framework can achieve performance surpassing mainstream feder-
ated frameworks. This results further illustrates that DGT plug-in
can bring vital convergence acceleration and performance improve-
ment, which is important for the application of federated learning
in noniid scenarios.

Hence, we raise the question: Can DGT be integrated with main-
stream federated learning methods to further enhance federated
performance on non-iid data?

6.3 Generalization of the DGT plugin

To answer this question, we further combined DGT with two widely-
utilized FL frameworks including FedProx and Scaffold.

Figure?? reflects the performance gains from the introduction of
DGT plug-ins on top of mainstream federated learning frameworks.
It can be seen that DGT improves inference accuracy of 5% and
10% based on Scaffold, while achieves 2X convergence acceleration.
Compared to vanilla Scaffold, introduce DGT plugin brought 5%
improvement of inference accuracy and 2X convergence speed up.
This fully demonstrates the versatility of DGT plug-in for perfor-
mance improvement and convergence acceleration of noniid data
federation. Importantly, the introduction of the DGT plugin does
not require any specific design or modification to the original fed-
erated learning framework; rather, it entails gradient calibration
through the DGT module prior to performing federated aggrega-
tion.

7 CONCLUSION

In this paper, we proposed dynamic gradient tailor (DGT) a novel FL
plugin to improve the FL efficiency and performance on Non-i.i.d
data. We first analyze the relationship between data distribution
consistency, gradient similarity, and federation performance. Next
we propose the DGT to reduce harmful interactions among up-
loaded gradients and encouraging improve gradients similarity by
directly rotate gradients to target vector which consists by the
other gradients. By applying the pre-aggregated optimization plan
and Adopt the asynchronous calibration mechanism, DGT incurs
limited server-side overhead. Experimental results confirms that
DGT improves both convergence speed by 2-6X and performance
by 3.5%-15%, and support that DGT is a general plugin which can

Jiachen Li, Yuchao Zhang, Yiping Li, Xiangyang Gong, and Wendong Wang

be integrated with mainstream FL frameworks to further improve
the efficiency and performance on non-i.i.d data.

REFERENCES

[1] Prateek Chaudhari, Sayan Zhang, Josephine Chen, Anisha Suresh, Udaya Kannan,
Pieter Abbeel, and Michael I Jordan. 2021. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:2103.03281 (2021).

[2] Kai Chen, H. Brendan Huang, Jinhui Liu, and Qiang Zhang. 2020. Federated meta-
learning with fast convergence and efficient communication. In International
Conference on Learning Representations.

[3] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei,
and Yong Zhang. 2021. Personalized cross-silo federated learning on non-iid data.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 7865-7873.

[4] LiJianyu and Fedprox Pml. 2019. Fedprox: Federated optimization with proximal
gradient descent. In International Conference on Learning Representations.

[5] Y Lecun, Y Bengio, and G Hinton. 2015. Deep learning. Nature 521, 7553 (2015),
436.

[6] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Helen Helen Li, and Yiran Chen.
2021. Hermes: an efficient federated learning framework for heterogeneous
mobile clients. (2021).

[7] Jianqging Li, Yujie Chen, Boyan Zhou, Yuxi Qiu, Haoyi Wu, Miao Fang, and
Junzhou Huang. 2021. MOCHA: Multi-objective communication-efficient Feder-
ated Learning with holistic quality optimization. In International Conference on
Learning Representations.

[8] Jianyu Li, Xiaoyu Liang, and Lilian Weng. 2020. ArFL: Federated learning with
auxiliary task reweighting. In International conference on machine learning. PMLR,
6196-6205.

[9] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50-60.

[10] Xiang Lian, Liang Fu, Shiwei Zhang, Jiashi Feng, and Zhi Xiong. 2020. HeteroFL:
A federated learning framework for heterogeneous devices in distributed edge
environment. In International Conference on Learning Representations.
Anxin Liu, Yang Li, and Jian Tian. 2020. Client selection for federated learning
with non-IID data. IEEE Transactions on Communications 69, 8 (2020), 5237-5249.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273-1282.
[13] H. B. Mcmahan, E. Moore, D. Ramage, S. Hampson, and Bay Arcas. 2016.
Communication-Efficient Learning of Deep Networks from Decentralized Data.
[14] H. Brendan McMahan, Eider Moore, Daniel Ramage, Sachin Hampson, and
Blaise Aguera y Arcas. 2016. Communication-efficient learning of deep networks
from decentralized data. In International Conference on Artificial Intelligence and
Statistics.
Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. 2019.
Wireless network intelligence at the edge. Proc. IEEE 107, 11 (2019), 2204-2239.
Felix Sattler, Simon Wiedemann, Klaus-Robert Muller, and Wojciech Samek.
2021. Clustered Federated Learning: Model-Parallelism v.s. Data-Parallelism. In
International Conference on Artificial Intelligence and Statistics. PMLR.
Xiaoyang Wang, Xiangru Chen, Cong Shi, Qingyang Li, and Meikang Qiu. 2021.
Hermes: An Efficient Federated Learning Framework for Heterogeneous Mobile
Clients. IEEE Transactions on Parallel and Distributed Systems 32, 3 (2021), 703~
717.
Yang Wang, Tingting He, Kai Zhao, Kin K Leung, and Khaled B Liu. 2021. Fed-
match: Communication-efficient federated learning with adaptive matchmaking.
In Thirty-second Conference on Neural Information Processing Systems.
[19] Yong Wang, Xiaoqing Li, Xiaolin Wu, and Jiajia Chen. 2020. FedOpt: A new
optimization approach for federated learning. Sensors 20, 10 (2020), 2812.
Yang Wang, Toby Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya,
Tingting He, Kai Zhao, and Khaled B Liu. 2020. Federated optimization in
heterogeneous networks. arXiv preprint arXiv:1812.06127 (2020).
Qiang Yang, Yang Liu, Tianjian Chen, and Yu Tong. 2019. Federated learning via
local model aggregation. In International Conference on Learning Representations.
Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
2020. Gradient Surgery for Multi-Task Learning. (2020).
Weiwei Zhao, Zhecheng Du, Tongxin Wang, Ji Liu, Chaoqun Wu, Wenjian Wang,
Jian Ma, and Yadong Liu. 2021. Federated Learning with Minimum Contamination
Subset Selection. In International Conference on Learning Representations.
Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. 2018. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582
(2018).

[11

[12

[15

[16

(17

(18

[20

[21

[22

~
=

[24

Dynamic Gradient Tailor for Non-1.1.D. Federated Learning 2

100 60 2 a0
o ¥ Y .
Ii-\i 1 ~ A
80 1 - \ . N
o N 30 R N N 30 <
? W 3 2 V 2
£ @ H £ H
8 8 % % 2
} - : . .
5 4 5 g]
= / < 8 g
1 & S
» 1// 10 10
o o o —— R
AP S G @ D @ TR g g o8 A B B 10 N S A8 K1 g8 g8 g8 g® 3 60 9 120 150 180 210 240 270 300 30 60 9 120 150 180 210 240 270 300
Rounds Rounds Rounds Rounds
——FedAVG —— FedAVG(DGT) + FedAVG —— FedAVG(DGT) +FedAVG —— FedAVG(DGT) —~— FedAVG —— FedAVG(DGT)
(a) (b) () (d

Figure 5: (a) and (b) shows the performance of DGT on MNIST, and CIFAR-10. On all above dataset, DGT improves the FL
efficiency under limited communication resource by achieves better performance with fewer communication rounds. (c) and
(d) shows the gradients similarity and conflicts throughout the FL process on MNIST and CIFAR-10 dataset. Indicating that
DGT makes the direction of gradients more consistent across clients during global model updating.

Jiachen Li, Yuchao Zhang, Yiping Li, Xiangyang Gong, and Wendong Wang

	Abstract
	1 Introduction
	2 OBSERVATIONS
	3 Background
	4 Related Work
	5 Dynamic Gradient Tailor
	6 Experiments
	6.1 System, Non-iid Simulation, and Model
	6.2 Performance of the DGT plugin
	6.3 Generalization of the DGT plugin

	7 Conclusion
	References

