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ABSTRACT
Personalized federated learning aims to address two key chal-
lenges in federated systems: performance degradation of the
global model, and the lack of specificity to individual clients.
Both of the two challenges are caused by client heterogene-
ity. Previous solutions often assume all clients are dealing
with similar learning tasks, in which nearly the same kinds
of labels should be learned and global learning performs
well. However, another common scenario is ignored by most
work, where label distributions among different clients in-
volve disparate label kinds, and there are also substantial
biases among different labels even within the same client. In
response to this challenge, we propose FedCOM, an innova-
tive workflow that can help the local personalized federated
model to find its best peer(s) to learn from. Our method con-
sists of two key components: gradient-based Complementary
Client Matching and Personalized Federated Learning that
combines these complementary aspects. Inspired by Class
Activation Map (CAM) in neural network interpretability,
we take partial derivatives on the loss of target minority
classes to identify feature channels that make significant
contributions to the classification task. Subsequently, we
introduce the complementary models selected as regulariza-
tion terms into local personalized optimization objectives.
Experiments demonstrate that FedCOM can achieve faster
convergence, while maintaining higher accuracy on MNIST,
Fashion-MNIST, and CIFAR-10 with an average improve-
ment of 1.35% compared to the local-only training strategy,
as well as 44.19% and 1.28% to FedAVG and the personalized
federated method Ditto.
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1 INTRODUCTION
Federated Learning (FL)[15] is a machine learning frame-
work that enables multiple participants to collaboratively
construct a federated model while upholding privacy preser-
vation. As the saying goes, every coin has two sides. While
federated learning provides privacy protection for local data,
non-independent and non-identically distributed data(non-
IID) problems caused by data silos come along and bring new
challenges.

According to [6], non-IID settings can be categorized into
five distinct settings: feature distribution skew, label distribu-
tion skew, same label with different features, same features
with different labels, and quantity skew. Previous studies
[6, 11] have highlighted the impact of non-IID data among
participating clients on the effectiveness and convergence
speed of the federated model. As the heterogeneity among
clients increases, the optimization of the global model devi-
ates even further from the local objectives[12, 27]. Conse-
quently, relying solely on a single global model proves inad-
equate in meeting the performance requirements of diverse
clients. To cater to the specific data distribution of individual
clients, researchers have introduced the concept of training
multiple federated models in parallel, addressing the limita-
tions of a single model [3, 5, 23]. Notably, personalization
and clustering-based algorithms leveraging client similarity
have emerged as promising approaches in this regard, which
often assume all clients deal with similar learning tasks and
with clustered structures [25]. However, faced with the sce-
nario described in Figure 1, these conventional approaches
may not be effective.
In that scenario, each client encompasses both majority

and minority classes, with highly skewed label distributions
in both amounts and kinds across different clients. Simulta-
neously, the number of samples labeled the same on different
clients exhibits a complementary relationship. Such an as-
sumption is common in the real world. For example, the
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zoos located in China and Australia may both keep pandas
and kangaroos with different numbers, where pet dogs sel-
dom appear even though they are very common. Under such
settings, similarity-based personalization methods [10, 14]
that incorporate the global federated model into local train-
ing may inadvertently introduce noise for clients that have
a limited number of specific labels. Similarly, due to the
distribution variations among multiple clients, clustering-
based optimization algorithms [17, 20, 21, 29] also struggle
to accurately identify similar members, resulting in poor
performance of the generated clustering models.

So how to find the best peer(s) that a personalized model
can learn from? Especially in the given scenario where the
heterogeneity arises from distribution-based label skew [16]
and variations in majority-minority class distribution within
individual clients [26]? In this paper, to tackle this issue, we
present a customized federation workflow FedCOM, which
consists of two crucial components: Complementary Client
Matching strategy based on neural network interpretabil-
ity and Personalized Federated Learning with regularization
terms. We summarize our contributions below:
1. We point out the limitations of current personalized

federation algorithms when selecting "peers" in the presence
of extreme label offset scenarios. We argue that simply incor-
porating the global model into local personalized training
will introduce unwanted noise, meanwhile selecting similar
models is ineffective under such circumstances.
2. We propose an innovative workflow called FedCOM,

which can autonomously identify the best peers thus to max-
imize the accuracy of the personalized local model.

3. Experiments on MNIST, Fashion-MNIST, and CIFAR-10
datasets show that FedCOM can achieve faster convergence,
with an average accuracy improvement of 1.35% compared to
the local-only training strategy, as well as 44.19% and 1.28%
to FedAVG and Ditto, which demonstrate the effectiveness
and efficiency of our FedCOM.

2 RELATEDWORK
In this section, we provide an overview of previous research
on personalization federation and neural network interpretabil-
ity that are closely aligned with our work.
Personalized Federation. Personalized federation is a

popular strategy aimed at producing highly customized mod-
els for different clients based on their local data distribution
and requirements. MTL[13] employs a penalization optimiza-
tion method to learn personalized models. The penalization
term can capture the complex relationships between per-
sonalized models, and provide personalized models for com-
pletely unfamiliar participants. FedMSplit[3] is a personal-
ized federated learning algorithm that dynamically captures
the graph structure to adapt to different client types. This

Figure 1: Real-world scenarios where FedCOM applies.

approach effectively addresses the challenge of inconsistent
modalities encountered in multi-modal federated learning
scenarios. DITTO [10] tackles the issues of fairness and ro-
bustness by introducing regularization terms into the local
objective function. By adjusting the similarity between the
local model and the global federated model, DITTO achieves
personalized federated models while effectively mitigating
fairness and robustness concerns. Marfoq et al.[14] exploited
the ability of deep neural networks to extract high-quality
vector representations (embeddings) from non-tabular data.
They introduced a personalization mechanism based on lo-
cal memorization, leveraging these embeddings to enhance
model customization at the individual client level. This ap-
proach involves interpolating a pre-trained global model
with a KNN model, utilizing the shared representation de-
rived from the global model. Compared to the aforemen-
tioned personalized federated learning algorithms, Oort[8]
optimizes the federated model by selecting participants with
higher utility values to participate in the next round of feder-
ated training before each training round begins. By adjusting
the utility value calculation formula, an optimal balance can
be achieved between fairness and model effectiveness.

Neural Network Interpretability.How neural networks
work is a vital topic in the field of artificial intelligence. Over
the years, massive notable works have emerged, delving
into the inner workings and the reasons why deep neural
networks have such excellent feature representation ability.
Examples of these works include Activation Maximization
[18], Layer-wise Relevance Propagation [1], Class Activa-
tion Map[28], etc. In this part, we only focus on research
surrounding Class Activation Mapping (CAM). The phenom-
enon of class activation mapping (CAM) in Convolutional
Neural Networks (CNNs) was first proposed by [28]. They
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Figure 2: The workflow of FedCOM.

demonstrated this by employing a weighted summation of
feature maps derived from the last convolutional layer. The
generated activation values (non-zero values after ReLU acti-
vation) can highlight the regions in the image where objects
are located. To overcome the constraints imposed by CAM
on the number of fully connected layers and model architec-
tures, [22] proposed an alternative method called Grad-CAM
with greater flexibility and adaptability. This approach per-
forms backward propagation through the logits of the target
class to obtain gradients related to output feature maps from
the last layer. These gradients are then used asweights for the
corresponding feature channels. Grad-CAM has provided
valuable insights and inspiration for our client-matching
strategies. The rest of the work also includes HiResCAM[4],
GradCAM++[2], AblationCAM[19], etc.

3 FEDCOM DESIGN
As shown in Fig 2, FedCOM workflow consists of two key
steps: Complementary Client Matching and Personalized Lo-
cal Training with regularization terms. In our method, each
client 𝑘 ∈ [𝐾] maintains a global model𝑤 for global feder-
ated learning, and a local model 𝑣𝑘 with the local objective.
First, we execute a global federated learning step for𝑤 and
exploit the loss gradients for the target class to find comple-
mentary client pairs for client𝑘 . Then, we average the weight
of 𝑣𝑘 with that of the complementary pairs and update it via
the local dataset with the regularization of𝑤 .

3.1 Complementary Client Matching
For the last MLP layers, the channels with larger weights are
more significant for the classification task, for higher logits
value would be gained when target patterns are recognized.

In this perspective, we propose to match the complementary
clients via channels.
For client 𝑘 , we denote the collection of minority classes

on it as𝐶𝑚𝑖𝑛𝑜𝑟 , and the federated loss at 𝑡 round as 𝐿𝑡 . During
the federated optimization, the clients who maintain large
amounts of data of 𝑐𝑖 ∈ 𝐶𝑚𝑖𝑛𝑜𝑟 would contribute much in the
significant channels of 𝑐𝑖 , so these most important channels
can be recognized and the complementary clients as well
during training. As we optimize𝑤 by𝑤𝑡+1 = 𝑤𝑡 − 𝜂 × g, the
large contribution means minor gradient value. Then, our
objective is to find clients that minimize the gradient sum
over important feature channels.

Specifically, the whole process of client matching includes
the two following steps as shown in :

1. At the beginning of 𝑡 round federation, client 𝑘 optimize
the global model𝑤 with its own training data locally. During
backward, the gradients of each parameter can be calculated.
Given the target class 𝑐𝑖 , we can get the partial derivatives
on the classifier layer𝑊 , as well as the gradients of channels
related to 𝑐𝑖 . Then, we filter out the minimum top-𝑥 channels
in gradients, whose index set constitutes {𝑖𝑑𝑥}𝑘 . At the end
of the round, client 𝑘 uploads the channel set and model
updates to the central server.
2. Once the server receives the channel set {𝑖𝑑𝑥}𝑘 up-

loaded by the requester client 𝑘 , it begins to search who has
the minimum sum of gradients on these channels among all
clients. Then the target complementary pairs of client 𝑘 can
be found.

3.2 Personalized Federated Learning
After the global federated training, model𝑤 should fit:

𝑤 ∈ argmin
𝑤

𝐺 (𝐹1 (𝑤), ...𝐹𝐾 (𝑤)) (1)
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Algorithm 1 Complementary Client Matching
Input: 𝑊 , {𝑊𝑘 }𝑘∈[𝐾 ] , 𝑐𝑖
1: Each client calculates its gradient of classifier layer𝑊 :
2: for 𝑘 ∈ [𝐾] do

g𝑘 B𝑊 −𝑊𝑘

3: end for
4: Client 𝑘 sends g𝑘 and the target class 𝑐𝑖 to the server
5: Server fetches the important channel set of 𝑐𝑖

{𝑖𝑑𝑥}𝑘 = 𝑖𝑛𝑑𝑒𝑥 (top-𝑥𝑠𝑚𝑎𝑙𝑙 (g𝑘 (𝑖)))
6: find a client 𝑘𝑐𝑜𝑚 for client 𝑘 :

𝑘𝑐𝑜𝑚 = argmin
𝑝∈[𝐾 ]

∑
{𝑖𝑑𝑥 }𝑘

𝑔𝑝 (𝑖, 𝑖𝑑𝑥)

7: return 𝑘𝑐𝑜𝑚

where 𝐹𝑘 (𝑤) is the local objective for client k, and 𝐺 (·) is
a function that aggregates the local objectives 𝐹𝑘 (𝑤)𝑘∈[𝐾 ]
from each clients.
Following previous work [10], we keep a local model for

personalized tasks for data heterogeneity. To merge the con-
tribution from different clients, we conduct a partial fed-
erated learning between the complementary pairs on their
local models. For client 𝑘 and one of its complementary client
𝑘𝑐𝑜𝑚 , we average their local model 𝑣𝑘 and 𝑣𝑘𝑐𝑜𝑚 :

𝑣𝑘 B MEAN(𝑣𝑘 , 𝑣𝑘𝑐𝑜𝑚 ), (2)

then the new 𝑣𝑘 gains an initial weight of the client 𝑘𝑐𝑜𝑚 .
Then, since DITTO has achieved great success in per-

sonalized learning by global regularization, we follow it by
introducing a regular term with 𝑤 into local training. The
optimized object for client 𝑘 is as follows:

min
𝑣𝑘

ℎ𝑘 (𝑣𝑘 ;𝑤) B 𝐹𝑘 (𝑣𝑘 ) +
𝜆

2
| |𝑣𝑘 −𝑤 | |2 (3)

The degree to which the local model approaches the com-
plementary model is controlled by the hyperparameter 𝜆.

The interpolation between the local model and the comple-
mentary model becomes smaller. In this way, personalized
training not only preserves model updates contributed by
majority classes locally, but also incorporates information
related to the minority class from other clients.

4 EXPERIMENTS
In this section, we provide empirical evidence to substan-
tiate the effectiveness and performance improvements of
FedCOM.

4.1 Setups
4.1.1 Fundamental Settings. We chose image classification
as the central task and utilized a modified LeNet [9] as our
CNN network. The experiments encompassed three popular
datasets: MNIST[16], Fashion-MNIST[24], and CIFAR-10[7].

Algorithm 2 Personalized Federated Learning

Input: 𝑇, 𝐹𝑘 (𝑤),𝐺 (·), 𝜂, 𝜆,𝑤0, {𝑣0
𝑘
}𝑘∈[𝐾 ], 𝑠

1: for 𝑡 = 1, · · · ,𝑇 − 1 do
2: for client 𝑘 ∈ [𝐾] do
3: Solve the local sub-problem of 𝐺 (·) starting

from𝑤𝑡 to obtain𝑤𝑡
𝑘
:

𝑤𝑡
𝑘
⇐ UPDATE_GLOBAL(𝑤𝑡 ,∇𝐹𝑘 (𝑤𝑡−1))

4: Send Δ𝑡
𝑘
B 𝑤𝑡

𝑘
−𝑤𝑡 back

5: Search complementary client 𝑘𝑐𝑜𝑚 for 𝑘
6: Combine local model with 𝑘𝑐𝑜𝑚

𝑣𝑘 ⇐ MEAN(𝑣𝑘 , 𝑣𝑘𝑐𝑜𝑚 )
7: Update 𝑣𝑘 for 𝑠 local iterations:

𝑣𝑘 = 𝑣𝑘 − 𝜂 (∇𝐹𝑘 (𝑣𝑘 ) + 𝜆 | |𝑣𝑘 −𝑤𝑡 | |)
8: Send 𝑣𝑘 back to the server
9: end for
10: Server aggregate {Δ𝑡

𝑘
}:

𝑤𝑡+1
𝑘

⇐ AGGREGATE(𝑤𝑡 , {Δ𝑡
𝑘
}𝑘∈[𝐾 ])

11: end for
12: return {𝑣𝑘 }𝑘∈[𝐾 ],𝑤

𝑇

To simulate realistic scenarios, we assigned one majority
and one minority class to each client and deliberately created
highly imbalanced data distributions among them. During
the test, the data of these two classes were with the same
amount. We set the number of clients to 10 and grouped
them into 5 complementary pairs with all data of two classes.
For each pair, the training data is complementary to another.
Then, the whole dataset can be shared without overlap.

For MNIST and Fasion-MNIST, the percentage of majority
and minority classes are 95% and 5%, and for CIFAR-10 the
rates are adjusted to 80% and 20% due to a higher training
difficulty. Considering the task of binary classification is a
bit simple, we added one noisy class for each client with
the same amount of the minority class in training data to
enhance model learning.

4.1.2 Details. Our FL system was implemented using Py-
Torch. Each client adopted a local batch size of 32, a learning
rate of 0.001, and the SGD optimizer with a momentum of 0.9
for weight updates. Regarding personalized training, we set
the hyperparameter 𝜆 to 0.01 both for Ditto and our FedCOM.
During the complementary client matching step, we take
𝑥 = 5 for channel filtering. All experiments are running with
a single Intel i7-9750H CPU.

4.2 Effectiveness of FedCOM
We compare our method with pure local training, FedAVG,
and Ditto. The average accuracy of each method is listed in
Table 1. The accuracy of FedCOM not only exceeds the local
model independently trained by a single client but also the
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Table 1: Accuracy evaluation on MNIST, Fashion-
MNIST, and CIFAR-10 datasets.

Methods MNIST Fashion-MNIST CIFAR-10

local-only 0.9567 0.9462 0.7326

FedAVG 0.6095 0.4975 0.2432
Ditto 0.9661 0.9402 0.7321

FedCOM (Ours) 0.9738 0.9519 0.7503

Table 2: Matching accuracy of our Complementary
Client Matching algorithm.

Top-𝑥 MNIST Fashion-MNIST CIFAR-10

1 94.5 % 96.7 % 97.0 %
5 98.5 % 100 % 98.3 %
20 100 % 100 % 97.7 %

personalized federated method Ditto, which also proves the
effectiveness of our complement-based strategy.
Although the pure local training strategy also reaches

a high accuracy, the problems are that the convergence is
slower and the model will overfit due to the lack of minority
classes, especially when the minority class is with extremely
little data and the model is big. However, a small model can
even not be initiated well in some cases, which brings a
conflict to the pure local strategy. And since the test data is
equally distributed for the two classes, at least about 50% ac-
curacy can be reached easily from the majority class. In that
case, the improvement from our FedCOM for the minority
class is obvious and important. The results demonstrate that
when facing a high heterogeneity among clients, FedCOM
canmeet the accuracy requirements of each client as much as
possible while providing privacy protection for each client.

4.3 Convergence
As shown in Fig 3, FedCOM stands out from other baselines
due to its outstanding performance in converging faster
while maintaining higher accuracy, which shows the effi-
ciency of our method. Specifically, we can notice the follow-
ing two phenomena. The accuracy of FedCOM on validation
sets has the most obvious upward trend at the beginning
of training and ranks higher than other baselines in most
epochs. These phenomena prove that FedCOM can learn
the updates caused by the target class more selectively from
complementary models.

4.4 Accuracy of Client Matching
We count the accuracy of our complementary client match-
ing algorithm during optimization to demonstrate its effec-
tiveness, as shown in Table 2. The results illustrate that our
method can have high accuracy in finding out the potential

(a) MNIST (b) Fashion-MNIST

(c) CIFAR-10 (d) FMNIST with FedAVG

Figure 3: Validation accuracy during training. Our Fed-
COM outperforms other baselines with the fastest con-
vergence as well as the highest accuracy.

complementary client and is robust to the hyperparameter 𝑥
under federated learning. Besides, our method works well at
every stage, brought by our gradient-based design.

5 CONCLUSION AND FUTUREWORK
We present a personalized federation workflow FedCOM
from the perspective of complement, specially designed for
the real-world scenario involving label shifts, quantity vari-
ations and complement relationships in data distributions
between clients. We first propose an interesting and efficient
complementary matching method based on the gradients
of feature channels, and then fuse the local models with a
partial federated learning step. Following previous regular-
based work, we also utilize the global federated model as a
regularization in local personalized learning. Experiments
show that FedCOM can bring obvious progress in helping
minority class learning and outperforms several famous fed-
erated methods like FedAVG and Ditto.
In future work, we expect to further optimize the client-

matching strategy to minimize the impact of pre-training
federation rounds on the performance of FedCOM.
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