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Abstract—The rapid growth of traffic demands on wide-area
networks (WANs) has resulted in escalated transmission costs for
cross-national enterprises. Many researchers have proposed traf-
fic scheduling methods that can effectively reduce transmission
costs and improve network performance. However, the majority
of research in this field assumes that traffic demands and network
link quality are known in advance, disregarding the impact
of information agnostic. While some works try to obtain this
knowledge through prediction, they lack awareness of prediction
errors, which makes it difficult for their scheduling strategies
to achieve theoretical results. In this paper, we propose a novel
scheduler Grandet that aims to reduce transmission costs without
any prior knowledge. First, instead of requiring prior knowledge
or accurate prediction, Grandet determines the intervals of
flow sizes and link quality parameters through confidence-based
Bootstrap method combined with neural network model, thus
quantifying the uncertainty of these information. Then, we design
a cost-aware online traffic scheduling framework using the uncer-
tainty intervals from interval determination to optimize the cost
minimization problem. Through rigorous theoretical analysis,
we prove the approximate optimality of Grandet in minimizing
transmission costs. Trace-driven and large-scale simulations show
that Grandet successfully reduces transmission costs by over 23%,
reduces deadline miss rate by over 31%, and reduces Service
Level Agreement (SLA) dissatisfaction rate by over 37%.

Index Terms—Traffic Engineering, SD-WAN, Bootstrap
Method, Lyapunov Optimization

I. INTRODUCTION

In recent years, as the explosive growth of traffic demands,
the network is constantly being expanded and upgraded. To
reduce transmission costs and improve network availability,
an increasing number of enterprises have been moving from
earlier MPLS-based WAN solutions to SD-WAN solutions [1].
For example, Google’s B4 [2] and Microsoft’s SWAN [3]
improve bandwidth utilization through software-defined and
centralized traffic engineering systems. To establish WANs
covering global enterprise sites around the world, cross-
national enterprises lease multiple types of heterogeneous links
(e.g., private lines based on MPLS, LTE/5G, broadband Inter-
net, etc.) [4] from Internet Service Providers (ISPs), as shown
in Figure 1. Enterprises typically purchase bandwidth and
choose charging models (e.g., 95th percentile charging model
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Fig. 1. SD-WAN in large-scale hub-spoke networking mode, where the
marginal cost of MPLS is several times higher than that of the Internet.

[5]) from ISPs for each link. WAN links with varying unit
prices have different network quality (e.g., jitter, delay, and
packet loss rate) [6], leading to a strong correlation between
bandwidth costs and the performance of traffic scheduling.

The SD-WAN solution allows dynamical selections of trans-
mission paths to efficiently schedule mix-flows based on link
conditions and time-varying traffic demands [1], which pro-
vides an opportunity to significantly reduce transmission costs
[7]. In recent years, many researchers have explored novel
traffic scheduling methods, which can be roughly divided into
two categories:

i) Clairvoyant schedulers: These methods assume that
flow sizes are known in advance [8]. Some focus on path
selection and traffic allocation for immediate traffic [9], [10],
and some make full use of the charging model by shaping [7]
or delaying [11] deferrable traffic. Clairvoyant schedulers offer
excellent performance in terms of minimizing transmission
costs and guaranteeing the quality of service (QoS), but the
feasibility is limited due to the need for prior knowledge
like traffic demands in each scheduling period. Because it is
impractical to ascertain accurate traffic demands due to the
dynamic of flows. As a result, these methods often fall short
of expectations due to the agnosticity of prior knowledge in
actual deployment. Therefore, they rarely achieve deployment.

ii) Non-clairvoyant schedulers: In order to design a practi-
cal method that can address the information-agnostic problem,
some methods [12] [13] try to predict traffic demands to
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eliminate the need of prior knowledge through experience-
driven heuristics or machine learning. But such knowledge is
difficult to obtain with high confidence through prediction [8].
In fact, most of these methods lack awareness of the errors
between the predicted value and the actual traffic demands.
This disparity leads to a gap between scheduling and practical
operation. In addition, there are also some studies exploring
algorithms that do not require flow size information, e.g.,
Aalo [14] and PIAS [15], which leverage relative priority for
scheduling. However, compared with clairvoyant algorithms,
they perform worse due to the lack of precise flow scheduling.

In this context, is it possible to design a non-clairvoyant
algorithm that does not rely on accurate predictions but
approaches the effectiveness of clairvoyant schedulers in terms
of reducing costs and guaranteeing QoS?

In light of the uncertainty of arriving flow sizes in traffic
scheduling, designing such an online algorithm involves two
challenges: i) It is difficult to predict flow sizes precisely
with high confidence. If absolute flow sizes are employed for
scheduling, the scheduling results are strongly dependent on
the accurate prediction. Consequently, inaccurate predictions
will lead to suboptimal or even poor scheduling results. ii) Due
to the complexity of the network and the long-term charging
model, online traffic scheduling algorithms are likely to fall
into local optimum. Besides, some traffic demands, especially
immediate traffic such as real-time video transmission, have
strict SLA requirements (e.g., delay, jitter, packet loss rate,
etc.) [16]. Since the link’s SLA quality is also dynamic and
unknowable [16], it is necessary to take the link conditions
into account to guarantee service quality, which increases the
complexity of scheduling.

In this paper, we introduce Grandet, an online traffic
scheduler that aims to minimize bandwidth costs and guar-
antee the QoS without prior knowledge. Since the accurate
prediction is difficult to be obtained with high confidence, we
advocate using estimation intervals to replace the need for
precise prediction of traffic demands or link states. To this
end, Grandet combines the Bootstrap method with a neural
network model to determine the intervals of flow sizes and
link SLA quality with a pre-specified confidence probability.
Based on the fuzzy and uncertain intervals, we propose a cost-
aware online traffic scheduling framework. We first formulate
a stochastic optimization problem with the objective of cost
minimization and then decompose the problem into a solvable
online scheduling optimization problem through Lyapunov
optimization techniques [17]. We conduct extensive trace-
driven simulations to evaluate Grandet. Simulation results
demonstrate that Grandet reduces transmission costs by more
than 23% in the large-scale workload. In terms of service
guarantee, Grandet reduces deadline miss rate by more than
31% and reduces SLA dissatisfaction rate by more than 37%.

In summary, our main contributions include:

• We reveal that existing traffic scheduling algorithms ei-
ther require prior knowledge or highly depend on the
accuracy of flow size predictions. Moreover, a brief

example of the potential performance deviations resulting
from inaccurate predictions is carried out.

• We propose an online traffic scheduler, Grandet, which
can minimize transmission costs and improve service
quality without any prior knowledge.

• We conduct extensive trace-driven simulations to evaluate
the performance of Grandet, and the results show that
Grandet is cost-effective and QoS-guaranteeing.

II. RELATED WORK AND MOTIVATION

In this section, we summarize the related work and expose
the problems of existing works. Then, we motivate the design
of Grandet through an illustrative and simple example.

A. Related work

Network cost optimization: Regarding the transmission
costs, there has been a lot of excellent work. Since the
percentile charging model is widely used, we mainly focus
on the works based on it. DTM [9] and Cascara [10] schedule
immediate traffic by pricing-aware algorithm to reduce band-
width costs. TrafficShaper [7] designs a pricing-aware online
control framework to control deferrable traffic’s transmission
rate for reducing transmission costs while maintaining a low
deadline miss rate. In order to manage costs and provide
service guarantees, Pretium [18], a framework integrating
dynamic pricing into traffic engineering, model percentile
charging as a compact set of linear inequalities. While these
methods are effective in cost reduction, they are clairvoyant
algorithms, which require prior knowledge of flow sizes, hence
difficult to be practically applied.

Traffic scheduling under information-agnostic: Informa-
tion agnostic solutions typically improve network performance
through information estimation or priority-based scheduling.
Regarding information estimation, researchers have explored
heuristics and machine learning to predict flow sizes [8], [12],
[13], [19]. But in fact, it is difficult to achieve stable high
precision in predicting these knowledge [8]. In addition, these
prediction algorithms lack awareness of prediction errors,
which may lead to unpredictable results. DarkTE [20], which
realizes that prediction errors can be problematic, uses random
forests to classify flows and then allocates the rate and path
to flows based on confidence to mitigate occasional classi-
fication errors. As for priority-based scheduling, e.g., Aalo
[14] and PIAS [15], although they outperform the baselines,
their performance is always much worse than the clairvoyant
ones. To solve the minimum cost problem, Homa [1] proposes
a randomized greedy algorithm which iteratively find the
cheapest link for each unit of demand and performs well with
sufficient capacity. Different from aforementioned works, we
leverage interval estimation based on confidence instead of
point prediction for traffic scheduling, which can significantly
reduce the impact introduced by prediction errors. Meanwhile,
compared to priority-based scheduling, we provide more pre-
cise scheduling solutions.
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(a) Load balance with correct information, total
billed bandwidth=6
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(b) Load balance with incorrect information, total
billed bandwidth=7
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(c) Optimal scheduling, total billed bandwidth=4

Fig. 2. A small-scale motivating example with two links (taking MPLS-A and MPLS-B of site n in Figure 1 as an example) with identical unit cost and
bandwidth upper limit of 5 for both. As for traffic demands, there are three flows with size {3,6,9}, while their deadlines are {1,2,3}. For simplicity, we
consider the 50th percentile charging model over three time slots.

B. A motivating example

Percentile charging model. ISPs typically charge with
the widely embraced percentage charging model [5]. In each
charging period (e.g., a month), the ISP records the bandwidth
usage in every time slot (e.g., 5 minutes) and takes the
maximum θth percentile as the billed bandwidth. Therefore,
the (1 − θ)% time slots with the highest bandwidth usage
are not included in charging, i.e., ‘free’ slots. In this context,
the traffic scheduler operates in a discrete-time mode, that is,
traffic scheduling is executed at the beginning of each time
slot. Thus, we can arrange more traffic in (1 − θ)% free
slots to reduce traffic in other time slots, which provides the
opportunity for cost reduction.

Potential problems of existing algorithms. For better
illustration, we use a small-scale example to demonstrate the
problem, as shown in Figure 2. Due to the identical config-
uration of two links, the heuristics (Load Balance [4]) that
network operators have historically used will simply allocate
traffic fairly between two links. Regarding the deferrable
traffic, we take ES (Equal Splitting) [21] as an example,
which can evenly distribute traffic to each time slot within
the deadline. Under such a scheduling mechanism, when flow
sizes are estimated correctly, the total billed bandwidth is
P50({4.5, 3, 1.5}) + P50({4.5, 3, 1.5}) = 6 (P50 is a function
that calculates the maximum 50th percentile in the sequence.),
as shown in Figure 2(a).

Incorrect estimation of flow size can result in unexpected
additional costs. In this example, we assume that the flow
sizes of flow-2 and flow-3 are incorrectly estimated as 4
and 6 at the beginning of time slot 1. Consequently, the
flows would be scheduled with incorrect information until
the specific flow sizes are detected at the beginning of the
second time slot. In this case, the total billed bandwidth is
P50({3.5, 3.75, 1.75})+P50({3.5, 3.75, 1.75}) = 7, as shown
in Figure 2(b). Compared with having a correct estimate of
flow sizes, the total cost increases by 1/6. Because of the
challenge in accurately determining flow sizes [8], schedulers
that rely on accurate flow size prediction are difficult to
achieve desired goals.

Feasibility of optimal scheduling. Nevertheless, it is pos-
sible to achieve optimal results even without prior knowledge.

In this small-scale example, if a scheduling algorithm has a
mechanism to actively utilize free slots, optimal scheduling
result can be achieved irrespective of correct or incorrect
information. Assume that free slots are actively used in the
first time slot, that is, the scheduler tries to maximize the traffic
on two links in time slot 1. For the correct traffic estimation
{3, 6, 9} or the incorrect ones {3, 4, 6}, there will be the same
optimal scheduling results, with total billed bandwidth equal
to P50({5, 2, 2})+P50({5, 2, 2}) = 4, as shown in Figure 2(c).
Therefore, even if accurate flow sizes information is difficult
to obtain with high confidence, optimal scheduling can be
achieved or approached.

Observations. From the motivating example, it can be
observed that: i) Due to the lack of prior knowledge in the
implementation, the performance of clairvoyant algorithms
likely deviates from the expectation. ii) Even without prior
knowledge, a good scheduling algorithm may approach op-
timal scheduling. This requires full consideration of how to
mitigate the impact of information-agnostic, how to leverage
the rules of the charging model, and how to spread traffic in
each time slot.

III. SYSTEM OVERVIEW

Grandet is a novel traffic scheduler that realizes cost-aware
and service-guaranteed traffic scheduling without requiring
any prior knowledge. Its two primary goals include: (1) deter-
mining the intervals of flow sizes and link quality parameters
with high confidence. (2) reducing transmission costs while
guaranteeing QoS through precise path selection and rate
control of flows. As depicted in Figure 3, Grandet is mainly
composed of two modules: interval determination agents and a
traffic scheduling controller. Next, we will present more details
about the two modules.

A. Distributed interval determination agent

Distributed interval determination agents run on edge de-
vices, continuously monitoring SLA quality of each link and
traffic demands of each application. At the beginning of each
time slot, the interval determination agents estimate traffic
demands and SLA quality intervals with historical traffic data
and then update these interval estimates to the centralized
traffic scheduling controller. To achieve cost-effective and
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Fig. 3. An overview of Grandet

service-guaranteed traffic scheduling, it is necessary to obtain
sufficient knowledge about traffic demands and link SLA qual-
ity. However, obtaining such knowledge accurately is difficult
due to its time-varying characteristic. Most time series predic-
tion algorithms can only produce point predictions with little
awareness of their accuracy or errors, which make them hard
to provide credible information for optimal traffic scheduling.
Therefore, we propose two design principles on how to pro-
vide credible knowledge for improving traffic scheduling: 1)
estimating flow sizes and SLA quality with error awareness.
2) providing information with high confidence instead of point
prediction with poor confidence. On account of the stability
and accuracy of the Bootstrap method in time series prediction,
we use it to generate interval estimation for flow sizes and SLA
quality, which will be elaborated in Section IV.

B. Centralized traffic scheduling controller

The centralized controller collects information from dis-
tributed interval determination agents and executes the traf-
fic scheduling optimizer. Then, it deploys the updates on
transmission paths and rate allocation for each application
to edge devices. To design a traffic scheduler that effectively
reduces transmission costs and guarantees QoS, it is necessary
to analyze the factors that affect costs and QoS. According
to the observations of the motivating example, the impact
of information agnostic, the rules of the charging model,
and traffic distribution among time slots dominate the effects
of traffic scheduling. Therefore, we propose three design
principles on how to optimize traffic scheduling: 1) using
flow sizes and link SLA quality interval estimation thus
reducing the impact of information-agnostic. 2) transferring
more traffic in free slots and minimizing the maximum traffic
in other time slots thus taking full advantage of percentage
charging model’s rules. 3) leveraging interval estimations of
traffic demands to achieve rate control thus distributing traffic
within deadlines reasonably. Taking all factors into account,
we formulate a stochastic optimization problem to minimize
the long-term average cost. By decomposing the long-term
stochastic optimization problem into sub-problems of each
slot with the Lyapunov optimization techniques, we design an
online traffic scheduling framework, which will be elaborated
in Section V.

IV. FLOW SIZES AND SLA INTERVALS DETERMINATION

In this section, we introduce how to determine the intervals
of flow sizes and SLA quality with high confidence. Figure
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Fig. 4. Interval determination framework, combining bootstrap method and
neural network prediction model to generate interval estimation

4 presents the interval determination framework, which com-
bines the Bootstrap method with NeuralProphet [22].

By bootstrapping predictions on an ensemble of neural net-
works [23], interval estimation can achieve higher accurate and
stable compared to other uncertainty quantification methods
like MVE or Bayesian. In addition, NeuralProphet, a powerful
time series forecasting tool, is a combination of Prophet and
neural network, which retains original characteristics and all
advantages of Prophet. At the same time, by introducing AR-
Net to model time series auto-regression, it can combines the
scalability of neural network with the interpretability of AR
model to improve its accuracy and scalability. Therefore, we
can enhance the stability and accuracy of interval determina-
tion to quantify uncertainty by integrating the benefits of the
Bootstrap method and NeuralProphet. The details of interval
determination framework are as follows.

First, we need to make it clear that the prediction target
(e.g.., traffic demand dk, where time subscript t is eliminated
for brevity) logically consists of true regression yk and noise
ϵk following a normal distribution with zero mean, which can
be expressed by

dk = yk + ϵk. (1)

The core idea of Bootstrap is to train multiple models by
resampling, and then generate less biased estimates of true
regression and noise through these models to construct interval
estimations. Using B subsets {Di}Bi=1 resampled from the
original dataset, B NeuralProphet models are trained. Then,
B∗ models, whose loss function value is less than the mean
value, are selected to construct interval estimations. The less
biased estimated value yk of the true regression yk is obtained
by averaging the point predictions from the selected B∗ model,
which is given by

yk =
1

B∗

B∗∑
i=1

yk,i, (2)

where yk,i is the point prediction of ith model. In essence,
the interval estimation represents the probability distribution
of target values by quantifying the prediction error (dk − yk).
With the knowledge that (yk − yk) and ϵk are statistically



independent [24], we can get the variance of (dk−yk) deduced
from Equation (1), which is given by

(dk − yk)
2 = σ2

yk
+ σ2

ϵk
, (3)

where σ2
yk

= (yk − yk)
2 is the variance of the model

uncertainty and σ2
ϵk

is the variance of the random noise.
Thus, the upper and lower bounds of the estimation interval

are obtained by adding or subtracting the uncertainty of the
difference between dk and yk to the estimated value yk of the
true regression, which is given by

U
(α)
k = yk + zα

2
·
√
σ2
yk

+ σ2
ϵk
, (4)

L
(α)
k = yk − zα

2
·
√
σ2
yk

+ σ2
ϵk
, (5)

where zα
2

is the α
2 quantile of the standard normal distribution.

The prediction target will be bracketed in [L
(α)
k , U

(α)
k ] with a

confidence level (1− α)%.
The variance of model uncertainty σ2

yk
is approximated as

σ2
yk

=
1

B∗ − 1

B∗∑
i=1

(
yk,i − yk

)2
. (6)

From Equation (3), the variance of the noise σ2
ϵk

is estimated
as follow:

σ2
ϵk

≃ E
[
(dk − yk)

2
]
− σ2

yk
. (7)

To get an estimation of the noise’s variance σ2
ϵk

, we train a
model with the same structure to predict the residual r2k, which
is given by

r2k = max
{
(dk − yk)

2 − σ2
yk
, 0
}
. (8)

Using the dataset Dr2 = {dk(t), r2k(t)|t = 1, 2, ..., T − 1},
we train the prediction model for the variance of noise σ2

ϵk
according to the following loss function:

L =
1

2

T−1∑
t=1

[
ln

(
σ2
ϵk
(t)

)
+

r2k(t)

σ2
ϵk
(t)

]
. (9)

In order to keep the variance positive, the activation function
of the output layer is configured as exponential function. With
the approximate estimation of σ2

yk
and σ2

ϵk
, the upper bound

and lower bound can be obtained by (4) and (5). Thus, we
can determine the intervals of flow sizes and SLA quality with
confidence level (1− α)%.

Ik =
[
yk − zα

2

√
σ2
yk

+ σ2
ϵk
, yk + zα

2

√
σ2
yk

+ σ2
ϵk

]
. (10)

By determining the interval, we quantify the uncertainty of
traffic demands and SLA quality, thus providing confidence-
based information to optimize traffic scheduling. Note that
different parameter configurations should be adopted for flow
sizes and SLA quality interval estimations, such as setting the
periodicity of flow sizes prediction and the aperiodicity of SLA
quality prediction. In the following section, we exploit interval
estimation to realize cost-aware traffic scheduling.

V. ONLINE TRAFFIC SCHEDULING OPTIMIZATION

In this section, we present an online traffic scheduling
framework that aims to minimize transmission costs while
improving the satisfaction rate of deadline and SLA require-
ments. Firstly, we present the formulation of the long-term
problem with the objective of minimizing average cost. In
our formulation, we restrict the transmission paths and relax
traffic satisfying constraints using flow sizes and SLA quality
intervals with a pre-specified confidence level. Since the long-
term problem is unrealistic to solve directly without future in-
formation, we leverage the Lyapunov optimization techniques
to decompose it into slot-by-slot cost minimization problems.

A. Problem formulation

We consider a typically hub-spoke network as shown in
Figure 1, where there are multiple applications at each site.
Each application transmits immediate traffic like real-time
video transmission or deferrable traffic like database geo-
backup with a fixed deadline requirement. Since the percentile
charging model records the average traffic of each time slot
and then charges with maximum θth bandwidth usage for
the entire charging period, time can be regarded as discrete.
Suppose that time is divided into T time slots, with each slot
spanning 5 minutes.

At time t, the unfinished deferrable traffic of applica-
tion k is denoted as dtk,i, where i indicates its deadline.
The estimation interval of arriving deferrable traffic size is
expressed as [dt,Lk,n, d

t,U
k,n]. Therefore, for deferrable traffic,

the expected minimum transmission rate of application k is
dt,Lk =

∑n−1
i=1 dtk,i/i + dt,Lk,n/n, while the expected maxi-

mum transmission rate is dt,Uk =
∑n−1

i=1 dtk,i/i + dt,Uk,n/n. As
for immediate traffic, its traffic demand interval is directly
expressed by the interval estimation [dt,Lk , dt,Uk ]. Let xt

e,k

denote the allocated bandwidth for application k in link e,
xt
k =

∑
e∈E xt

e,k denote the aggregate allocated bandwidth
for application k, and f t

e =
∑

k∈K xt
e,k denote the bandwidth

usage of link e at time t. In each charging period with N
time slots, let Ze = Pθ({f t

e|t ∈ 1, 2, ..., N}), where Pθ is
the function that calculate the maximum θth bandwidth usage,
denote the maximum θth percentile billed bandwidth of link e.
There is no difference between upload and download traffic in
formulation, but when calculating the billed bandwidth, their
percentile billed bandwidths are calculated respectively and the
maximum value will be taken as the actual billed bandwidth.
For simplicity, the distinction between upload traffic and
download traffic is omitted here, similarly hereinafter.

To minimize transmission costs and achieve better service
quality, we formulate the long-term average cost minimization
problem with QoS Constraints. For a long-term T, there are
P = T/N charging periods. So, the objective function of the
cost minimization problem P1 is expressed as follows:

lim
T→∞

1

P

P∑
p=1

∑
e∈E

vce ·max {Ze(p)− Cb
e , 0}, (11)



where vce is the marginal cost of elastic bandwidth, Cb
e is the

basic bandwidth, i.e. committed bandwidth. Since the cost of
committed bandwidth is fixed and how to set the committed
bandwidth is not considered in this paper, it is omitted in the
cost function.

For each application, in order to satisfy traffic requirements
with high confidence, dt,Uk ≤ xt

k should be made. In our for-
mulation, we relax this inequality with long-term constraints:

lim
T→∞

1

T

T∑
t=1

(dt,Uk − xt
k) ≤ 0,∀k ∈ K. (12)

This relaxation guarantees that xt
k is greater than the expected

maximum transmission rate on average, which effectively
prompts flow to be completed within its deadline [7].

However, such a relaxed constraint may result in an overly
reduced transmission rate for cost reduction, leading to an
unexpected increase in deadline misses. So, in order to ensure
the completion time of flows, we limit the aggregate transmis-
sion rate of each application to be greater than the expected
minimum transmission rate in each time slot:

xt
k ≥ dt,Lk ,∀k ∈ K. (13)

This constraint limits the lower bound of the transmission
rate for each application. But this lower bound incurs little
cost increases because the committed bandwidth is usually
sufficient to satisfy the lower bound of traffic demand.

For all time slots t in each charging period p, the following
constraints need to be satisfied:

xt
e,k = 0, (τ te , δ

t
e, φ

t
e) ≥ (τk, δk, φk),∀k ∈ K, e ∈ Ek, (14a)

f t
e ≤ Cm

e · (1− ut
e) + CM

e · ut
e,∀e ∈ E, (14b)

N∑
t=0

ut
e ≤ N · (1− θ)%,∀e ∈ E, (14c)

Ze(p) ≥ f t
e −M · ut

e,∀e ∈ E. (14d)

Among them, τk, δk, φk are jitter, delay, and packet loss
rate requirement of application k respectively, and τ te , δ

t
e, φ

t
e

are the upper bound of SLA quality estimation interval. So,
(14a) means that the application traffic will be allocated to
the links that strictly satisfy the SLA quality requirements
of the application with high confidence, thus guaranteeing
the transmission quality. (14b) is the link capacity constraint,
where Cm

e is the upper bound of elastic bandwidth, e.g., the
specified maximum value of percentile billed bandwidth, and
CM

e is the upper bound of physical bandwidth. This constraint
ensures that the link’s maximum θth bandwidth usage does not
exceed the elastic bandwidth limitation. ut

e indicates whether
time slot t is a free slot, and (14c) indicates the quantity
limitation of free slots. (14d) is the charging rules of the
percentile charging model [10], which is used to obtain the
percentile billed bandwidth.

Given the above objective function and constraints, P1 is
a long-term average cost minimization optimization problem
that is impractical to solve directly. On the one hand, the traffic
arrival pattern and link fluctuation are impractical to predict

accurately for the entire charging period. On the other hand,
percentile charging relies on the usage of free slots throughout
the charging period, but optimizing the usage of free slots is
complicated. These challenges make it impossible to solve
P1 without future information. Therefore, it’s necessary to
simplify P1 by decoupling and decomposing it.

B. Decomposition with Lyapunov optimization

Since it is impractical to solve problem P1, we take advan-
tage of Lyapunov optimization techniques [17] to decompose
P1 into a solvable online optimization problem. In particular,
the approximate optimality of this online optimization problem
is proven by rigorous theoretical analysis in Section VI.

Since obtaining the overall optimal free slots allocation
scheme is difficult, it is necessary to transform P1 into a de-
composable relaxed problem before decomposing the problem
into an online optimization problem. Due to the tight coupling
between free slots utilization and percentile billed bandwidth
in P1, Eqs. (14c)(14d) need to be transformed as follows:

ut
e + ut′

e ≤ N · (1− θ)%− µe + 1,∀e ∈ E, (15a)

(1− ut′

e ) · (zte − f t′

e ) + ut′

e · (f t′

e − zte) ≥ 0,∀e ∈ E, (15b)

where t′ is the time slot with the smallest bandwidth usage in
previous free slots, zte is the current maximum θth percentile
billed bandwidth, µe represents the number of slots whose
used bandwidth exceeds zte, i.e., the number of free slots
already used. Through these two inequalities, we relax the
cost minimization problem from period-by-period to slot-by-
slot, thus having a relaxed problem P2:

lim
T→∞

1

T

T∑
t=1

∑
e∈E

vce ·max {zte − Cb
e , 0}. (16)

Although P1 and P2 are different in terms of objectives
and constraints, the optimal solution of P2 can achieve the
optimality close to that of P1, as P2 for each slot can be
regarded as a sub-problem of P1.

Then, we utilize Lyapunov optimization techniques to de-
compose P2 into sub-problems for each slot. We first construct
a set of virtual queues to control traffic backlog. For each
application k, there is a virtual queue Qk(t) and Qk(0) = 0.
In each time slot, the queues are updated as follows:

Qk(t+ 1) = max{Qk(t) + dt,Uk − xt
k, 0}. (17)

These virtual queues record the deviation between the expected
transmission rate and the allocated ones, which represents
the historical traffic backlog. In this context, the long-term
constraints in Eq. (12) are transformed into the requirement of
satisfying queues stability conditions limT→∞ Qk(T )/T = 0.

For each time slot t, we define the Lyapunov function L(t),
which is a scalar measure of the traffic backlog:

L(t) =
1

2

K∑
k=1

Qk(t)
2. (18)

L(t) reflects the traffic backlog level of the entire system. The
smaller L(t) is, the smaller the total traffic backlog will be,



leading to a shorter average flow completion time, i.e., a lower
deadline miss rate. To achieve queues stability conditions, L(t)
should be kept low. Then, we introduce Lyapunov drift as the
change of the traffic backlog from t to t+ 1:

△L(t) = L(t+ 1)− L(t). (19)

It is easy to check that to keep a low traffic backlog
level, we should make △L(t) as small as possible. Therefore,
to stabilize the queue backlog while minimizing the time
average of transmission costs, we construct drift-plus-penalty
to decompose P2 into sub-problems for each time slot. In each
time slot, combining problem P2 with the Lyapunov drift, the
problem P3 for reducing costs while guaranteeing deadlines
is expressed as follows:

min△L(t) + V E
{∑

e∈E

vce ·max {zte − Cb
e , 0}|Q(t)

}
, (20)

where V is a control weight for the trade-off between cost
minimization and deadline guarantee. With suitable V , the av-
erage expected transmission costs can be significantly reduced
while guaranteeing service quality.

To transfer more traffic in free slots and avoid falling
into local optimum, there should be fewer free slots being
used in each time slot. Therefore, we direct traffic scheduling
optimization by adding an objective with lower priority:

min
∑
e∈E

ut
e. (21)

Given the secondary priority objective above, the use of free
slots can be minimized under the premise of ensuring the same
cost. Furthermore, according to traffic or link characteristics,
more objective functions with different priorities can be added
to optimize traffic scheduling.

Through solving P3, transmission paths and rate allocation
for the traffic of each application can be determined to
schedule traffic. Using the most advanced solver, e.g. GUROBI
[25], the sub-problems for each time slot can be solved
within a limited time. So far, we have developed an online
traffic scheduling optimization framework that can minimize
transmission costs while guaranteeing QoS.

VI. THEORETICAL ANALYSIS

Theorem 1: For any V > 0, the online traffic scheduling
optimization framework can achieve the following perfor-
mance guarantee: The average expected cost approximates the
optimal scheduling plus the addition with a constant factor
1/V . Similarly, the average queue size of the traffic backlog
is bounded with a constant factor of V .

Proof 1: Putting Qk(t+1)2 =≤ (Qk(t) + dt,Uk − xt
k)

2 into
△L(t) and rearranging it, the bound of Lyapunov drift is:

△L(t) ≤ B(t) +

K∑
k=1

Qk(t)(d
t,U
k − xt

k), (22)

where B(t) = 1
2

∑K
k=1 (d

t,U
k − xt

k)
2. Assuming that the ar-

rival traffic demands are bounded, there is a constant B ≥

E[B(t)|Q(t)] > 0. Deduce from Equation (22), the bound on
the conditional expected Lyapunov drift is given by

E[△L(t)|Q(t)] ≤ B +

K∑
k=1

Qk(t)E[(dt,Uk − xt
k)]. (23)

In many cases, the traffic can be ultimately completed before
deadlines, so that the difference between desired bandwidth
and the actual allocated bandwidth satisfies the following
inequality for real numbers ε > 0:

E[(dt,Uk − xt
k)|Q(t)] ≤ −ε. (24)

Therefore, substituting Equation (24) into Equation (23), the
bound on conditional expected Lyapunov drift is given by

E[△L(t)|Q(t)] ≤ B − ε

K∑
k=1

Qk(t). (25)

Taking the conditional expectation of Equation (25) and
summing it over previous time slots with telescoping sum
method, we have:

E[L(t)]− E[L(0)] ≤ Bt− ε

t−1∑
t′=0

K∑
k=1

E[Qk(t
′)]. (26)

Then extending the above formula to P3, the conditional
expectation bound of drift-plus-penalty is given by

E[△L(t) + V p(t)|Q(t)] ≤ V p∗ +B − ε

K∑
k=1

E[Qk(t)], (27)

where p(t) is the cost function in P3, and p∗ is the desired
target for the time average of p(t). Assume that p(t) has a
lower bound pmin. Summing this inequality (27) over previous
time slots with the telescoping sum method, we have:

E[L(t)]− E[L(0)] + V

t−1∑
t′=0

E[p(t′)] ≤

V p∗t+Bt− ε

t−1∑
t′=0

K∑
k=1

E[Qk(t
′)],

(28)

V

t−1∑
t′=0

E[p(t′)] ≤ V p∗t+Bt+ E[L(0)], (29)

ε

t−1∑
t′=0

K∑
k=1

E[Qk(t
′)] ≤ V (p∗ − pmin)t+Bt+ E[L(0)]. (30)

Therefore, the average expected cost is higher than the
optimal scheduling with a constant factor of 1/V and the
average queue size is bounded with a constant factor of V ,
which is given by

1

t

t−1∑
t′=0

E[p(t′)] ≤ p∗ +
Bt+ E[L(0)]

V t
, (31)

1

t

t−1∑
t′=0

K∑
k=1

E[Qk(t
′)] ≤ V (p∗ − pmin)t+Bt+ E[L(0)]

εt
.

(32)



TABLE I
ALGORITHMS COMPARISON IN THE TOPOLOGY WITH 1000 SITES

Method
Metric Performance Characteristic

Bandwidth cost($) Deadline miss rate(%) Non-clairvoyant Cost-aware Free slots aware
Load Balance [4] 173,837,122 11.63 ✓ × ×
Homa:Greedy [1] 19,584,862 2.53 ✓ ✓ ×

Cascara [10] 22,807,430 3.89 × ✓ ✓
Intuitive optimization 24,993,579 2.96 × ✓ ✓

Grandet 14,985,313 1.74 ✓ ✓ ✓
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Fig. 5. The performance of different algorithms in different workloads.

VII. EVALUATION

In this section, we conduct extensive simulations to verify
the effectiveness of Grandet.

A. Setup

Dataset: We use a one-month workload from an Internet
Service Provider, which contains three different applications
across 1000 sites. Moreover, two small-scale workloads, with
10 and 200 sites respectively, are used to verify the perfor-
mance of our algorithm under different network topologies.

Applications: One application transmits immediate traffic
like real-time video transmission, while the other two transmit
deferrable traffic like database geo-backup or service migration
with a fixed deadline requirement (4 time slots).

Network topology: The network topology is a typical hub-
spoke pattern (as shown in Figure 1). Each site is connected
to the data center via MPLS and Internet, with a total of 3215,
631, 34 links for 1000, 200, 10 sites scale, respectively.

Comparison of Different Algorithms: We compare
Grandet with the following algorithms in various aspects.

• Load Balance: The load balance [4] method distributes
arriving traffic across overlay links according to the
proportion of the committed bandwidth.

• Homa (Greedy): The greedy method in Homa [1] allo-
cates traffic with a random permutation of demands. For
each unit of demand, it iteratively finds the cheapest link
subject to link capacity and QoS constraints.

• Cascara: Cascara [10] records the number of free slots
and the maximum θth percentile for each link, and
distributes traffic based on a multi-priority scheme. The
first priority is the remaining free slots of the link, that
is, traffic is preferentially allocated to the links with

more free slots. The second priority is link capacity, thus
saving the free slots of links with higher capacity for the
remaining billing cycle.

• Intuitive optimization: The intuitive online optimization
method refers to an optimization algorithm constructed
with cost minimization function as objective and Eqs.
(14a)(14b)(15a)(15b) as constraints. And the allocated
traffic for applications is constrained to be equal to the
predicted traffic demands.

Since these schemes lack the mechanism for scheduling
deferrable traffic, we integrate ES (Equal Splitting) [21]
method into these algorithms to control the rate of deferrable
traffic. The ES method evenly distributes the arriving flow
into the next K time slots (K is set as the fixed deadline),
which is a simple and cost-effective solution. Although ES is
affected by information agnostic, the actual average effect is
not substantial due to a long deadline. Regarding the input of
these algorithms, we predict the flow sizes and SLA quality
parameters by a NeuralProphet model, which performs best
among the prediction methods we have implemented. Regard-
ing the charging model, we adopt 95th percentile charging
model, which means that (30× 24× 60/5)× 5% = 432 free
slots are available, i.e., 36 hours.

B. Results

We evaluate the effectiveness of the algorithm in terms of
bandwidth costs, deadline miss rate and SLA satisfaction rate.

Bandwidth costs: As shown in Figure 5(a), Grandet is more
cost-effective than other algorithms. On the one hand, Grandet
mitigates the impact of information agnostic by quantifying the
uncertainty through interval determination. On the other hand,
under the percentile charging model, Grandet coordinates
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Fig. 6. The cost and deadline miss rate growth curves of different algorithms, and the impact of control weight V in the workload with 1000 sites.

free slots usage of each link from a global perspective, thus
effectively transmitting more traffic with fewer free slots. In
addition, when scheduling deferrable traffic, it can reasonably
spread traffic to free slots and other slots before the deadline.
As depicted in Table I, we can further observe that compared
with Load Balance, Greedy, Cascara, and Intuitive optimiza-
tion methods, Grandet reduces the bandwidth costs by more
than 91%, 23%, 34%, and 40% respectively in the large-scale
workload with 1000 sites.

To have a comprehensive understanding of the reasons for
cost increase, we record the accumulative costs in days, as
shown in Figure 6(a). The cost of the Load Balance method is
exceedingly high, because the marginal cost of different links
in the network topology varies greatly and the Load Balance
method will exhaust the free slots of high-quality links within
the first two days, which leads to significant cost increase. It
is worth noting that the cost of Cascara is higher than greedy
ones. This is because Cascara allocates traffic with the free
slot as the first priority, leading to the situation that links
with high marginal cost may prematurely use up free slots and
billed bandwidth is forced to increase after the ninth day. As
for intuitive optimization, due to the lack of free slots saving
mechanism like Eq. (21), it may result in arbitrary traffic
assignment until free slots are exhausted, that is, it may fall
into local optimum. Therefore, compared with other pricing-
aware methods, the cost of intuitive optimization increases
steeply from the second day. Such results demonstrate that
our algorithm is effective in reducing transmission costs.

Deadline miss rate: Generally speaking, if the basic band-
width and the maximum elastic bandwidth are set reasonably,
most deadlines can be satisfied. However, manually setting
basic bandwidth and maximum elastic bandwidth cannot guar-
antee fault tolerance. At the same time, the SLA quality
of links often fluctuates, leading to traffic backlog. These
conditions cause deferrable traffic to queue up, resulting in
deadline miss. As shown in Figure 5(b) and Figure 6(b),
in terms of deadline miss rate, our algorithm has a slower
growth rate than other algorithms. This is partly because our
algorithm is more flexible than ES in rate control. Using free
slots reasonably, a large amount of backlogged traffic can be
transmitted in free slots, which can ultimately improve the
deadline satisfaction rate. Besides, the interval determination
method has higher accuracy in determining whether the link

meets the SLA requirement, thus reducing allocation errors to
immediate traffic that results in squeezing the transmission of
deferrable traffic. As depicted in Table I, compared with Load
Balance, Greedy, Cascara, and Intuitive optimization methods,
Grandet can reduce the deadline miss rate by over 85%, 31%,
55%, and 41% respectively in the workload with 1000 sites.

SLA dissatisfaction rate: Link quality parameters (like
jitter, delay, and packet loss rate) often fluctuate abruptly,
making accurate prediction challenging. In fact, determining
whether a link satisfies the SLA quality requirements of an
application does not necessitate accurate prediction of quality,
but requires a credible upper bound of quality parameters.
Therefore, compared with other time series prediction algo-
rithms, the confidence-based interval determination algorithm
has more advantages. As long as the confidence probability
parameter is set properly, the actual SLA quality can be
bracketed in the estimation interval with a high probability,
thus selecting the available links with high confidence. As
shown in Figure 5(c), compared with exponential smoothing,
using the monitoring value of the last moment, and direct
prediction with a NeuralProphet model, our algorithm has a
lower SLA dissatisfaction rate.
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Fig. 7. The prediction result of different prediction algorithms in half a day

Traffic prediction accuracy: To show the difference be-
tween point prediction and interval determination, we intercept
half-a-day traffic data of an application as an example, as
shown in Figure 7. In order to obtain a more stable traffic
interval estimation, daily seasonality and weekly seasonality
parameters are set to be true, so the direct prediction result is
relatively smooth. At first glance, exponential smoothing and



using monitoring value of the last moment has a curve close
to the real value. However, through careful observation, the
difference between prediction values and the actual demands
in each slot is 10% on average, which can make a significant
performance deviation for algorithms using point prediction.
In the case of interval estimation, traffic demands mostly
fall within the estimation interval, thus providing credible
knowledge to our traffic scheduling framework. Such results
demonstrate that interval estimation can provide more reliable
knowledge than point prediction methods.

Impact of control weight V: Control weight V has a sig-
nificant impact on the performance of Grandet since it serves
as a trade-off between transmission costs and task completion
time. To evaluate the effect of weight V on transmission costs
and deadline miss rate, we conduct a series of simulations
with V ranging from 1 to 500. As shown in Figure 6(c), as
V increases, the transmission cost decreases. On the contrary,
as V increases, the deadline miss rate also increases. This
is because the queue backlogs dominate P3 when V is small,
while transmission costs dominate when V is large. Therefore,
by choosing an appropriate value of V, such as V ∈ [5, 100],
our algorithm can significantly reduce transmission costs while
guaranteeing an acceptable deadline miss rate.

VIII. CONCLUSIONS
In this paper, we reveal that existing traffic scheduling

algorithms are highly dependent on the accuracy of flow size
prediction. When the predicted value deviates from the actual
value, existing algorithms may struggle to reach theoretical re-
sults. To this end, we present a novel traffic scheduler Grandet,
which can effectively schedule traffic without prior knowledge
and does not strongly rely on accurate prediction. In the design
of Grandet, we use the Bootstrap method combined with
the neural network to determine the range of flow sizes and
link SLA quality parameters with high confidence. Then, we
design an online traffic scheduling framework that can achieve
approximate optimality in reducing transmission costs while
guaranteeing QoS. Extensive trace-driven simulation results
show that Grandet is cost-effective and QoS-guaranteeing.
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