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Abstract—The development of machine learning provides a
new paradigm for network optimizations, e.g., reinforcement
learning (RL) has brought great improvements in many fields,
such as adaptive video streaming, congestion control of TCP.
The fundamental mechanism of such RL-based architectures is
that the neural network decision model converges to a stable state
by continuously interacting with network environment. However,
for network routing problem, such RL-based strategies do not
work well due to topology change. This is because topological
changes would require the existing RL models to be retrained,
while these models may stop making routing decisions or provide
non-optimal decisions during the slow reconverging process of
retraining, seriously affected transmission performance. To solve
this problem, we proposed a fast convergent RL-model (SOHO-
FL), which can alleviate the performance degradation caused by
the slow retraining process by federated learning. The experimen-
tal results based on real-world network topologies demonstrate
that SOHO-FL outperforms the state-of-the-art algorithms in
reconvergence time by 22.3% on average.

Index Terms—routing, reinforcement learning, federated learn-
ing

I. INTRODUCTION

As a highly-regarded technology in recent years, machine
learning (ML) has been widely employed in various fields,
which provides new ideas for solving increasingly complex
network optimization problems [1]–[3]. Reinforcement learn-
ing (RL), as an important branch of ML, is well-suited for
being applied in decision-making scenarios, such as adaptive
video streaming, congestion control of TCP, network resource
management, etc [4]. RL-based routing decision architectures
are currently a promising paradigm for dealing with sophisti-
cated routing tasks and have shown preliminary performance
in terms of accuracy and precision compared with traditional
modeling approaches in some recent research works [5]–[7].

Such RL-based routing approaches need to be trained to
converge under given network topology and traffic pattern, and
only the converged model can provide stable well-performance
routing policies. However, it is noted that the dynamicity, a
common feature of online networks that can introduce topo-
logical changes, may invalidate the converged decision model
and consequently result in inappropriate or even wrong routing
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decision-making model

decisions, as shown in Fig. 11. When network dynamics trigger
model retraining, it will take a long time for the model
to reconverge through continuous interactions with the latest
network environment and traffic [5]. Furthermore, during this
process, the transmission performance of the network will
be inevitably deteriorated by the unstable routing policies
generated by unconverged decision model [6]. Hence, it is
valuable and motive to accelerate the reconvergence process
to facilitate such learning-based approaches.

The existing works that faces topological changes can be
divided into the following categories. From the architecture
perspective: 1) For centralized architectures, when there are
topological changes, especially adding intermediate nodes,
the follows that involved these new nodes can be forwarded
timely following the proxy tactics [3], [6]. However, the
proxy tactic can only temporarily provide simple reachability
but fails to guarantee the routing performance, e.g., it will
increase the link load on proxy nodes and thus may cause
congestion; 2) For distributed architectures, each forwarding
node independently maintains a local model, which involves
a smaller scale of state space and action space than the
centralized global model. Therefore, the distributed model can
converge faster than the centralized global model in the same

1For a routing request generated from the network with the updated
topology, the routing decision-making model that converged on the previous
topology and traffic can only infer it based on the previous knowledge, and
thus, the routing policy cannot be applied to the updated network.
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network environment [5], [6]. Nevertheless, the time overhead
of convergence/reconvergence process is still unsatisfactory.
From the structure of decision model perspective: non-tightly
coupled neural network structures mainly enables the flexibil-
ity of the model in terms of topological changes. Although
such the structure may possible to reduce the computation
overhead of existing parameters, there is still a necessity
for a reconvergence process for parameters of newly added
neurons [5], [6]. That is, above schemes only passively adapt to
changes, while a time-consuming retraining is still inevitable.
In this work, based on existing studies, we propose a general
architecture to accelerate the reconvergence process.

Inspired by Digital Twin Network (DTN) and Federated
Learning (FL) technologies [8], [9], we proposed a Semi-
Offline Hybrid Online reinforcement learning-based routing
scheme (SOHO-FL), which can accelerate retraining pro-
cess. When topological changes trigger the retraining process,
SOHO-FL will immediately build multiple simulated network
environments by extracting the latest network features through
DTN, each of the simulated network contains an independent
model (twin model ), which will be trained by individual
interactions with different traffic on the corresponding sim-
ulated network. Then, in line with FL, the parameters of
all twin models are aggregated and updated periodically, in
a FL way, to update the master model. Such offline multi-
model federation can take advantage of the DTN to efficiently
capture more knowledge for the online master model, and thus
promotes faster reconvergence of retraining.

Our contributions are summarized as follows:
• We designed a novel neural network structure, SOHO,

which is promising when facing frequent changes in
network environment.

• We constructed a semi-offline hybrid online RL-based
routing architecture, SOHO-FL, which, assisted by FL,
can accelerate the reconvergence process of model re-
training and provide performance-guaranteed routing
policies efficiently.

• We conducted experiments based on real network topolo-
gies, and the results demonstrate that the proposed
scheme outperforms the state-of-the-art algorithms in
reconvergence time by 22.3% in average.

II. RELATED WORK

The rapidly evolving deep learning promotes learning-
based technologies to provide new paradigms for sophisticated
network modeling and optimization problems, e.g., adaptive
video streaming, congestion control of TCP [4]. In this section,
we present some existing related studies from two aspects:
learning-based routing strategies and federation learning ap-
plications.

A. Learning-based Routing

As an important category of machine learning, supervised
learning algorithms are applied to routing strategies. Kato et al.
[1] constructed a supervised deep learning-based traffic control
system with appropriate input and output characterizations
of heterogeneous network traffic, which outshines the widely

used OSPF routing strategy; they further designed the subtle
characterized input and output traffic patterns for the used
deep belief network to enhance route computation, which
outperforms the benchmark in terms of latency, throughput,
and signaling overhead [2]. Zhuang et al. [3] leveraged a
centralized graph deep learning model to calculate routing
policies in Software Defined Network (SDN) architecture,
which shows improvements in latency and efficiency. While
such supervised learning-based routing tactics can provide
satisfactory performance in specified networks, they still need
to be improved regarding adaptation and reliability in dynamic
networks.

Given that the features and execution process of reinforce-
ment learning are well suited for solving decision problems
with changing environments, it is widely used in network
routing optimization. The prior works applied Q-learning to
design routing algorithms for some specific optimization ob-
jectives and scenarios. However, the Q-learning-based model
gets incapable when the network status or routing objectives
become complicated. Therefore, recently, some studies start
to employ deep reinforcement learning to solve complicated
routing optimization tasks. Xu et al. [7] propose two tactics,
traffic engineering-aware exploration and actor-critic-based
prioritized experience replay, to specialize the general deep
reinforcement learning framework, which aims to minimize
the maximum link utilization by splitting each flow into
different given candidate routing paths. Liu and Cong et al.
[5], [6] all decompose the path generation process into hop-by-
hop routing decisions. In addition, [6] employs a multi-model
fusion strategy to flexibly satisfy multi-type transmission re-
quirements and analyzes the impact of topological changes on
model decision performance.

These existing studies, in the respective scenarios, showed
promising performance and improvement, which are guaran-
teed by the convergent models. However, as [5] indicates, the
reconvergence process of the models is time-consuming, which
will be further exacerbated by the topological dynamics of the
network. To this end, in this work, we strive to accelerate the
reconvergence process of the decision model in learning-based
network routing scenarios.

B. Federated Learning and Digital Twin Network
Federated learning was promoted for mainly addressing the

privacy concerns of devices, which was utilized by Google
company to deploy a model architecture that can enhance the
accuracy of mobile device keyboard search recommendations
on a global scale while not directly accessing the data of each
device [10]. In recent years, FL is being intensively studied
and extensively implemented. To improve the performance of
FL, some works try to solve the issue of data heterogeneity of
non-independent and identically distribution [11], accelerate
parameters integration and models convergence [12]. As well,
from application aspect, FL is applied to resource allocation
for IoT, communication in connected automated vehicles net-
work, and scheduling of the unmanned aerial vehicles [13],
[14]. Chetan et al. [9] proposed a novel FL-based strategy
to facilitate each model’s personalization efficiency in game
scenario.
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Digital twin network aims to model a virtual representation
of the physical communication network to ease the cost and
risk practices on the real network. In DTN, the involved data
is mainly generated from simulations, testbeds, or production.
The model construction techniques mainly involve classical
methods (Causal Bayesian Network, Hidden Markov Model,
etc.), neural network-based methods (Convolutional Neural
Networks, Graph Convolutional Networks, deep reinforcement
learning model, etc.), and so on [8].

In this work, to alleviate the impact caused by network
dynamics on learning-based routing decision model, we aim
to utilize the federated learning framework to improve the
efficiency of decision model reconvergence process combined
with DTN technology.

III. BACKGROUND AND MOTIVATION

A. General workflows of RL-based routing

In this part, we mainly introduce the overall process of RL-
based routing decision structure, the neural network model
outputs the forwarding path with the maximum reward for the
given request under the current network state, i.e., obtains a
comprehensive optimal transmission path with respect to delay,
throughput, packet loss rate, etc. The three main workflows
are as follows: 1) controller gathers the network states, which
include but are not limited to links’ property, reliability,
utilization, and the reward of the transmission performance
corresponding to the last round of decision; 2) the parameters
of neural network model will be updated based on the reward
and the action of the last round decision; 3) the model performs
inference and outputs the routing policy based on network
states for a new request. The policy will be pushed to the
forwarding plane for further implementation. Similarly, the
data involved in the new round will be also utilized to update
the model.

B. Reconvergence challenge

Although some RL-based routing models can handle dy-
namicity of link properties including delay, reliability, utiliza-
tion, etc., and even can temporarily address cancellations of
links by setting the weights of attributes to zero or infin-
ity, it is intractable to deal with topological changes when
new link/routers/switches are accessed. To be direct, it is
because such new nodes/connections will result in dimensional
changes in the representation input/output vector of the envi-
ronment/action space, which consequently fails to match the
existing model correctly. It may be feasible to deal with the
extensions of environment and action spaces by pre-setting
large enough dimensional states (all reserved connections are
covered by assigned zero/infinity weights). However, firstly,
this approach requires a larger neural network model to
extract environment and action features. If the training involves
reserved space, it will require more training data and time,
which would aggravate the inherently negative convergence
issue of RL. If it is simply reserved spare dimensions in
representation input/output vector, it still requires retraining
the model when topological changes occur because of the
lack of the knowledge of the new topology. In addition, large

model will increase the computational overhead and latency
of online inference when making routing policies. That is, the
time-consuming reconvergence process of the decision model
is inevitable under topological changes.

During the continuous interaction with the environment, the
RL-based model performs exploration and exploitation based
on the probabilities of ε and 1 − ε, respectively. The ε will
decrease continuously as the model converges, i.e., the model
will stably choose the action with the maximum reward based
on experience with a strong probability. Topological changes
will disrupt such the stabilization, i.e., shifts of the state space
and action space make model fail to work accurately. Even if
the shifted state and action space can simply match the model,
the new link/node will be naturally ignored due to the previous
stabilization and the absence of up-to-date experience, which
may cause non-optimal and even wrong decisions. In this
situation, it is necessary to increase the exploration probability
of the online model, i.e., the model will conduct extensive
interactions with the latest network by the action and reward
of online flows to reconverge into a new steady state.

However, the overhead of the reconvergence process cannot
be ignored. On one hand, direct offline training is infeasible
due to the lack of up-to-date network state and traffic data.
On the other hand, either offline training or training the model
through interactions with real-world environments can affect
the transmission of online traffic. Moreover, this effect will
persist throughout the reconvergence process.

C. Motivation and potential solution

As mentioned above, the duration and intensity of impact
on flow transmission would be alleviated if the reconvergence
process could be shortened. Then, it is valuable and motivating
to investigate a scheme that can accelerate the model recon-
vergence for RL-based routing architectures. How to provide
efficient and accurate retraining for the online decision model
becomes a feasible approach.

Hence, inspired by federated learning [9] and enabled by
DTN technology [8], we propose SOHO-FL, an FL-assisted
framework for model reconvergence acceleration. DTN tech-
nology can provide additional latest interaction environments
and extensive data for retraining, which enables retraining no
longer solely depend on the online traffic data from the real-
world. In addition, multiple parallel offline retraining can be
federated by following the FL way, which can further improve
the efficiency and performance of model retraining by fetching
additional policy experience.

The workflows of acceleration are as shown in the Fig. 2,
when topological changes of the network are detected, or when
the transmission performance of routing decision degrades to
the set threshold, the FL-assisted acceleration module will be
triggered. The accelerator extracts the up-to-date network state
via DTN technology and sends it to the control plane. From
the implementation perspective, a straightforward solution is
to set the network topology involving various properties of
the links to the network simulator and generate different
simulated traffic accordingly on networks with specified traffic
generation patterns. Then, each digital twin emulator network
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trains its associated neural network model (twin model ) by
simulate interactions. The twin model has the same structure
and the up-to-date state space and action space as the deployed
model (master models) in the real-world network environment.
After several iterations, all twin models upload the local
parameters to the model controller. The controller aggregates
the received parameters depending on specified functions and
sends aggregated results to all twin models and the master
model to update the parameters.

By doing so, the master model can be benefited from two
aspects: all twin models’ parameters, i.e., more experiences,
can be integrated to update master model ; digital twin network
simulators can provide more frequent interaction iterations to
update model efficiently. That is, based on SOHO-FL, the
online master model can no longer depend entirely on the
feedback of flows from real-world scenarios, instead, it can
be updated more efficiently and faster in a semi-offline way.

IV. DESIGN OF SOHO-FL

A. Decision Module

Given the scalability, we designed a distributed architec-
ture, i.e., each forwarding node maintains its decision model.
Moreover, the distributed architecture also supports hybrid
deployment. For the forwarding node in the network that
does not support the RL-based routing structure, it can keep
the traditional routing and forwarding way based on classic
routing algorithms.

1) Variable definition: The state space (S) contains both
features of the flow request sub-state and the network sub-
state. The information related to the flow request includes the
source and destination addresses, the type of transmission of
this flow; the information related to the network contains the
shortest path distance from all neighbors to other destinations,
and the available bandwidth of links, etc. The action space
(A) is the set of all neighboring nodes. In the employed
distributed decision architecture, each action (A,A ∈ A) is not
a routing path, but the next-hop based on the current node. It
is possible to obtain a complete path eventually after multiple
decision iterations. The reward (R) is a quantitative evaluation
of the transmission performance to the destination of the
decision, and Rj =

∑n
m=1 αif(e

j
m), where ejm indicates the

performance results of metric m (delay, throughput, etc.) of
flow j, f() is the regularization function to transform all
metrics’ results to a uniform scale (e.g., to ratio the results
of metrics ), and αi is the weight of each metric for different
transmission types (delay-first (DF), throughput-first (TF),
delay-throughput-first (DTF), etc.), which are constrained by∑n

i=1 αi = 1 and αi ∈ [0, 1].
In this work, the delay (αd) and throughput (αt) metrics

are considered. Then, for DF, αd is 1 and αt is 0; for TF,
αd is 0 and αt is 1; and for DTF, both αd and αt are 0.5.
And the Proximal Policy Optimization (PPO) algorithm [15]
is adopted for the parameters update.

2) SOHO network structure: The neural network structure
is shown in Fig. 3(a), which mainly consists of three parts: the
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input layer, the hidden layer, and the output layer. For ease of
observation and understanding, the output layer is shown in a
folded form, which essentially is a one-dimensional vector.

• Input layer: The input layer is responsible for feeding the
input data to the neural network. In line with the general
pattern, the input data to the model is also a vector,
the required addresses and the type of flow transmission
are represented in one-hot mode. Since the decision
model employs the distributed structure, combined with
the Markovian property of flow forwarding, the source
address can be transformed into the current node when
making decisions when making the decision, i.e., it is
possible to focus only on the destination address. Thus,
the size of the input layer is Nv +Nt, where Nv is the
number of forwarding nodes of the network and Nt is the
total number of provided transmission services types.

• Hidden layer: The hidden layer includes the shared layer
and the specialized layer. The shared layer is the generic
fully-connected multi-layer neural network that extracts
the features of the input state vectors, which can be
viewed as a feature extractor with the network topology.
The specialized layer is employed to cope with multi-
transmission types, which technicalizes features for dif-
ferent types of transmission. The numbers of neurons and
layers can be specified according to the topology scale in
implementation.

• Output layer: Based on the input of the specialized layer,
the output layer produces a probability distribution vector
for different types and destinations. Each element in the
vector represents the probability of selecting the corre-
sponding indexed neighbor as the next hop to forward

the flow. As shown in Figure 3(b), it is possible to
directly add the corresponding neurons to cope with the
requirement of adding new forwarding nodes. Similarly,
the new transmission types correspond to adding new
specialized layers and output neurons. Such decoupled
output layer can effectively guarantee the flexibility and
scalability of the model, which further alleviates the
impact of dynamic changes in the network from the
perspective of model structure.

3) SOHO Workflow: First, the input layer feeds the flow
request vector into the hidden layer. Then, the hidden layer
extracts and specializes the features to feed the output layer.
Finally, the output layer generates a probability distribution
vector. Suppose that, for a flow request (f i

j ) with specified
destination and transmission type (T = i, Des = j), F (f i

j |ω)
is the output vector of neural network (ω) with input f i

j .
The probability distribution sub-vector, which indicates the
probabilities of forwarding the flow to all n neighbors, can
be located by features of T and Des. For example, the
corresponding action sub-vector F (f i

j |ω)[i][j] of f i
j is circled

by the dashed line in Fig. 3(a). Finally, the action is to forward
this flow to the neighbor corresponding to the index of the
maximum probability element, i.e., action(f i

j )= K, where
K = argmaxk(F (f i

j |ω)[i][j][k] | k ∈ [1, n]).
4) Loop-free guarantee scheme: Neural network decision-

based routing policies cannot provide guaranteed reliability as
rule-based scheme, e.g., the exploration & exploitation princi-
ple of reinforcement learning may produce an unacceptable
action, which may cause loop routing problems. To solve
this problem, inspired by the anti-loop policy of inter-domain
routing protocol (AS-path attribute), we set a tag vector to
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TABLE I
PERFORMANCE COMPARISON

Method
Metric Average delay (ms) Average throughput rate (%)

DF DTF TF DTF
SPF 19.06 20.95 96.59 94.54

DRL-OR 11.81 11.96 99.85 96.62

SOHO-FL 11.82 11.90 99.93 96.58

record the passed nodes. When a loop decision is detected,
i.e., the next hop already existed in the tag vector. Then, this
inappropriate decision will be canceled and the new next hop
will be selected according to a deterministic policy such as the
shortest path algorithm. Meanwhile, a harsh punishment will
be fed back to the neural network as the reward to reduce the
probability of the same wrong decision next time.

B. Acceleration Module

The aforementioned decision model design involves spe-
cialization to handle the network dynamic changes from the
perspective of neural network structure. However, there is still
an issue of excessive overhead when reconvergence occurs.
To this end, inspired by federal learning and based on the
above design, we propose a FL-assisted model reconvergence
acceleration mechanism. When detecting the requirement of
converge the model, such as the number of added nodes
exceeding a threshold or a severe drop in the performance
of the model decision, then the acceleration process will be
triggered. The ideal way is to emulate the latest network, in-
cluding the corresponding traffic, by sophisticated digital twin
network technologies [8]. In the current scenario and demands,
from the implementation and deployment perspectives in this
work, it can be achieved with the existing network simulation
platforms.

Firstly, the network state, including network topology and
all links’ properties (e.g., delay, bandwidth, packet loss rate,
jitters), are collected and imported to the network simulator.
Then, setting the flow generation mode, which can be the
supplemented the historical traffic with some random traffic,
or generated simulated random traffic by the learning-based
approach, e.g., Generative Adversarial Network (GAN). More-
over, the traffic patterns of each twin network are required to
be different. That is, even if the same approach is employed
to generate simulated traffic for all DTNs, it is stipulated to
set different parameters under the generation characteristics to
ensure the discrepancy of data.

Based on the simulators, we set up several twin models,
which remain the same structure as the master model, to
independently interact with different traffic on corresponding
simulated network to update the decision model. After a period
of interactions, or a time interval, the parameters of all twin
models will be uploaded to the federated parameter controller,
which aggregates the received parameters by the specified
function. If the parameter upload is triggered at each fixed
time interval, the number of interactions of each client could be
different due to differences in computing power or simulation
traffic. Then, the number of interactions will be used as a
weight for parameters aggregation, e.g., ω′ = 1

N

∑n
i=1 αiωi,

where N =
∑n

i=1 αi, αi is the interaction frequency of
twin network client i, and n is the number of twin network
clients. After getting the new round aggregated parameters,
the federated parameter controller will send new parameters
to all client to update the decision models. These steps will
be iterated until the routing performance of the mater model
satisfies the requirements. We would like to explain here, in
contrast to distributed training, which divides the complete
dataset into independent and homogeneously distributed sub-
sets, we regard the way that each client generates traffic
internally on the simulator to individually train the model as
a federated learning-based approach.

Simulation of networks presents much more diversified traf-
fic and faster state update than real-world networks. Leveraged
by multiple twin models to obtain traffic features and network
state more quickly and extensively, the mater model can be
updated more effectively than it based simply on interactions
with real-world networks. And the master model can reach the
stable reconvergence state efficiently. Finally, it is possible to
alleviate the impact of inaccurate, even unavailable, decisions
caused by dynamic changes in the network.

V. EVALUATION

A. Setup

Based on the real-world network topology AbileneTM,
which has 11 forwarding nodes and 14 links, we leverage
Ryu (a Python-based network controller), Mininet (a common
network simulation platform), and the proposed reinforcement
learning algorithm which is implemented by PyTorch to con-
struct the experiments. In our experiments, we set up three
transmission types, delay-first (DF), throughput-first (TF), and
delay-throughput-first (DTF), corresponding to web services,
file downloads, and streaming media services, respectively. In
master, we scale the link rate and the send rate of the flows.
The general link rate is 10 Mbps, the specialized bottleneck
link rate is 2 Mbps, and the send rates of flows of three types
are 0.1 Mbps, 1.5Mbps, and 1.5Mbps. The delay of all links is
5 ms. Correspondingly, the employed 3 twins are also scaled,
whose parameters will be federated per 103 time intervals. The
three types of flows, DF (35%), TF (35%), and DTF (30%),
are generated proportionally, and the corresponding source and
destination nodes of each flow are specified randomly on each
network individually.

Moreover, although SOHO-FL can cope with multiple topo-
logical changes by triggering the acceleration module multiple
times, to better demonstrate the experimental results, it is
assumed that the current network state can remain stable
in topology for a period of time until this reconvergence is
completed.
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Fig. 4. Convergence Performance

B. Routing policies performance
The performance is evaluated by two metrics: one is the de-

lay, i.e., the flow completion time; the other is the throughput,
which is converted into a rate format for easier comparison,
i.e., the throughput divided by the maximum rate demand
of the flow. We select two classical routing strategies as
comparison algorithms: the first is a traditional graph-based
intradomain routing strategy, the shortest path first (SPF)
algorithm, which selects the path with the least forwarding
hops and overlooks links’ states; the other is a state-of-the-art
learning-based algorithm, DRL-OR [5].

The experiment results are shown in Table I, which indicates
that SOHO can fully utilize network resources and provide
satisfactory transmission performance for multi-type flows. For
this set of comparison experiments, we aim to state that the
SOHO-FL can outperform the SPF and provide comparable
performances to the state-of-the-art learning-based algorithm.
Then, in this context, we further demonstrate the convergence
improvements of SOHO-FL in the next subsection. Addition-
ally, as for the performance enhancements in Fig. 4(b) (4(d)), it
is because that the integrated optimization for all types of flows
enables the network to transfer all flows more appropriately
and efficiently, so DF (TF) flows can also be improved in
throughput (delay) aspect ultimately.

C. Convergence improvement
The target of the RL model is to converge to the state

where it can consistently provide satisfied routing policies.
Given that, we specify that the convergence of the model is
represented by the routing performance of its routing policies,
which is also consistent with some existing works [5], [6].
That is, the better the model’s routing decision performance
over a period of time interval, the more it converges.

To demonstrate the convergence of the models, we com-
pared SOHO-FL and DRL-OR, where SOHO-FL featured two

architectures, one is the basic model (SOHO) and the other
is equipped with FL acceleration. All three models are pre-
trained based on SPF, and we separately measured the routing
decisions performance of three types of flows during model
convergence.

Fig. 4(a) to Fig. 4(c) illustrate the statistics about the
delays of DF, TF, and DTF type flows. With the acceleration
of FL, SOHO-FL can reach the convergence state more
quickly. During the convergence process, compared to DRL-
OR (SOHO), SOHO-FL reduces the delay of DF, TF, and
DTF type flows by 24.3% (19.4%), 19.4% (20.5%), and 24.5%
(27.6%), respectively.

Along the same lines, Fig. 4(d) to Fig. 4(f) depict the
performance of the three types of flows regarding throughput
during the convergence process. The results are represented in
rate form. Since the DF flows are set up with a small volume,
the routing decision can obtain a promising throughput rate
as the utilization of the network improves, even without
specified optimization for DF flows. Correspondingly, SOHO-
FL improves the throughput over DRL-OR (SOHO) for DF,
TF, and DTF type flows by 11.7% (10.6%), 21.4% (19.2%),
and 16.8% (13.0%).

D. Additional performance analysis

In this subsection, we demonstrate the performance of the
proposed scheme from a model perspective.

The number of parameters of SOHO is proportional to its
layer scale, and in this experiment, the model has 0.06M
parameters. At this parameter scale, the time overhead of
federating the parameters of the two twin models is about 0.2
ms. The time complexity of the total federation is O(logN),
where N is the number of twin models. It is worth noting that
the federated process can be performed in parallel with the
model training. Additionally, each model takes about 0.8 ms
to infer the routing policy given the input.

This article has been accepted for inclusion in a future issue of this magazine.
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VI. CONCLUSION AND DISCUSSION

Reinforcement learning, as a promising solution to cope
with increasingly complex transmission requirements, can
provide sophisticated routing decisions, however, its overall
performance will be affected by network topological changes.
To this end, we proposed an FL-assisted semi-offline hy-
brid online RL-based routing architecture, SOHO-FL, whose
novel neural network structure has high flexibility for multi-
transmission types and network changes. In addition, SOHO-
FL can alleviate the impact of network topological changes
by accelerating the model reconvergence process. The exper-
imental results demonstrate that SOHO-FL achieves 22.3%
improvement in reconvergence time over the state-of-the-art
approaches in average.

The proposed FL-assisted acceleration scheme can be ap-
plied not only to the reconvergence scenario of the specified
RL-based routing model in this paper, but its idea can also
be employed to facilitate other learning-based models’ con-
vergence/reconvergence or improve the accuracy of routing
policy by merging additional experience simulated by digital
twin networks. Moreover, such performance improvements are
based on basic federation mechanisms, which can be further
boosted by more elaborate tuning strategies. In the future, we
will continue to optimize SOHO-FL in terms of the more
flexible neural network structure, and the efficiency or privacy
issue of federation strategy, and conduct more experiments to
demonstrate the performance improvements.

ACKNOWLEDGEMENT

The work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62072047
and 62172054, the National Key R&D Program of China
under Grant 2019YFB1802603, and the Key Project of Beijing
Natural Science Foundation under M21030. Peizhuang Cong’s
work was supported in part by BUPT Excellent Ph.D. Students
Foundation under Grant CX2021232.

REFERENCES

[1] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and
K. Mizutani, “The deep learning vision for heterogeneous network traffic
control: Proposal, challenges, and future perspective,” IEEE wireless
communications, vol. 24, no. 3, pp. 146–153, 2016.

[2] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “Routing or computing? the paradigm shift towards intel-
ligent computer network packet transmission based on deep learning,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1946–1960, 2017.

[3] Z. Zhuang, J. Wang, Q. Qi, H. Sun, and J. Liao, “Graph-aware
deep learning based intelligent routing strategy,” in 2018 IEEE 43rd
Conference on Local Computer Networks (LCN). IEEE, 2018, pp.
441–444.

[4] X. Zuo, J. Yang, M. Wang, and Y. Cui, “Adaptive bitrate with user-level
qoe preference for video streaming,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 1279–
1288.

[5] C. Liu, M. Xu, Y. Yang, and N. Geng, “Drl-or: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[6] P. Cong, Y. Zhang, Z. Liu, T. Baker, H. Tawfik, W. Wang, K. Xu, R. Li,
and F. Li, “A deep reinforcement learning-based multi-optimality routing
scheme for dynamic iot networks,” Computer Networks, vol. 192, p.
108057, 2021.

[7] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[8] L. Hui, M. Wang, L. Zhang, L. Lu, and Y. Cui, “Digital twin for
networking: A data-driven performance modeling perspective,” IEEE
Network, pp. 1–8, 2022.

[9] C. Nadiger, A. Kumar, and S. Abdelhak, “Federated reinforcement learn-
ing for fast personalization,” in 2019 IEEE Second International Con-
ference on Artificial Intelligence and Knowledge Engineering (AIKE).
IEEE, 2019, pp. 123–127.

[10] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619–640,
2021.

[11] X. Li, M. JIANG, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Federated
learning on non-iid features via local batch normalization,” in Interna-
tional Conference on Learning Representations, 2020.

[12] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learn-
ing via momentum gradient descent,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[13] V. Balasubramanian, M. Aloqaily, M. Reisslein, and A. Scaglione,
“Intelligent resource management at the edge for ubiquitous iot: an sdn-
based federated learning approach,” IEEE network, vol. 35, no. 5, pp.
114–121, 2021.

[14] B. Yang, H. Shi, and X. Xia, “Federated imitation learning for uav
swarm coordination in urban traffic monitoring,” IEEE Transactions on
Industrial Informatics, 2022.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

Peizhuang Cong is currently a Ph.D. student in State Key Laboratory
of Network and Switching Technology, Beijing University of Posts and
Telecommunications (BUPT), Beijing, China. He has published papers in
IEEE JSAC, IEEE/ACM IWQoS and so on. His research interests include the
next generation network architecture, data driven networks, routing protocols
and mobile Internet.

Yuchao Zhang received her Ph.D. degree from Computer Science Department
at Tsinghua University in 2017. Before that, she received the B.S. degree in
computer science and technology from Jilin University in 2012. She is now an
Associate Professor in Beijing University of Posts and Telecommunications,
and a Visiting Scholar in the University of Cambridge, where she is also a
Research Associate in the Wolfson College. Her research interests include
large scale datacenter networks, federated learning, data-driven networks and
edge computing. She is a member of IEEE and ACM.

Wendong Wang (M’05) received his B.E. and M.E. degrees both from the
Beijing University of Posts and Telecommunications, China, in 1985 and 1991,
respectively, where he is currently a Full Professor in State Key Laboratory of
Networking and Switching Technology. He has published over 200 of papers
in various journals and conference proceedings. His research interests are
the next generation network architecture, network resources management and
QoS, and mobile Internet. He is a member of IEEE.

Ke Xu (M’02-SM’09) received his Ph.D. from the Department of Computer
Science and Technology at Tsinghua University, where he serves as full
professor. He serves as an associate editor for IEEE Internet of Things Journal
and has guest edited several special issues in IEEE and Springer Journals. His
research interests include next generation Internet, P2P systems, Internet of
Things, network virtualization, and network economics.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 17,2023 at 08:13:16 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


