
Computer Networks 230 (2023) 109794

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A delayed eviction caching replacement strategy with unified standard for
edge servers
Pengmiao Li a, Yuchao Zhang b,∗, Huahai Zhang b, Wendong Wang a,∗, Ke Xu c, Zhili Zhang d

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
b School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China
c Tsinghua University, Beijing, China
d University of Minnesota, Minneapolis, United States of America

A R T I C L E I N F O

Keywords:
Edge server
Caching replacement
Fetching-time

A B S T R A C T

The current explosion of user traffic compels Internet service providers to cache contents at edge servers,
so as to reduce the response time of user requests. To deal with such vast amounts of content in edge
servers with limited storage, an efficient caching replacement strategy is necessary, consisting of admission and
eviction processes. Facing such a large number of user requests and limited storage of edge servers, traditional
caching replacement strategies have encountered two major problems. Firstly, they conduct eviction process
immediately after cache miss, which ignores the fetching time, during which there may still be multiple access
requests to the evicted contents. Secondly, most existing solutions treat admission process and eviction process
separately, with different standards, some contents might be fetched and evicted back and forth, seriously
affecting user experience. To solve these two problems and improve caching performance, we design two
caching modules, Delayed-Eviction and Unified-Standard, and integrate them together into Adele framework. By
conducting extensive simulations using real traces, we demonstrate that Adele can improve the hit rate by 31%
compared with the state-of-the-art solutions.
1. Introduction

With the development of 5G and AI technology, the number of users
is increasing exponentially. According to the report [1], the number of
worldwide social media users is 5.31 billion, which is more than 67.1%
of the world’s population. These users upload and view a lot of con-
tents, which introduces high requirements for caching and transmitting
on servers. Although these contents can be cached in the origin cloud
where there is enough storage space, it costs high network bandwidth
to send these contents back to the requesting users, which results in
high latency and poor Quality of Service (QoS). To reduce the tremen-
dous pressure on the backbone network & data centers and also provide
better QoS with lower latency, Internet content providers usually cache
these contents in edge servers nearby users. However, edge servers have
limited caching capacity and cannot cache all request contents as well
as cloud, which affects the caching performance. Therefore, it is crucial
to design an efficient caching replacement strategy for edge servers.

Existing caching replacement strategies have improved dynamic
caching performance on storage servers, such as efficient & low-
complexity strategies (LRU, LFU, and simple variants [2,3]) and
artificial intelligence technology strategies (LeCaR [4], LRB [5], and

∗ Corresponding authors.
E-mail addresses: yczhang@bupt.edu.cn (Y. Zhang), wdwang@bupt.edu.cn (W. Wang).

RL-Belady [6]). These strategies assume that the complete replace-
ment process includes four steps: user request (1⃝), access control
(2⃝), eviction (3⃝), and response (4⃝). In reality, the complete caching
replacement process includes 1⃝– 5⃝ as shown in Fig. 1. Therefore,
almost all the existing work ignores two problems: Fetching-Gap and
Standard-Conflict in this process.

Problem 1 (Fetching-Gap). Before the eviction stage, there is another
transmission step (5⃝). This step (5⃝) requires some time [7,8], known
as fetching-time, which might be greater than 100 ms [9,10], to retrieve
the missing content from the cloud. Therefore, it is unwise for existing
caching replacement algorithms to choose evicted contents right away
when the content sought in the access control step (2⃝) is missing.
About 1 million requests [11] for content are sent during the transmis-
sion step, some of which are likely to access recently evicted content,
decreasing the content hit rate and lengthening user wait times. Such
situation is referred to be ‘‘Fetching-Gap’’. (see Section 3.2.1)

Problem 2 (Standard-Conflict). A complete caching replacement strat-
egy consists of admission and eviction policies, which have been
vailable online 25 April 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109794
Received 1 February 2023; Received in revised form 14 March 2023; Accepted 19
 April 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:yczhang@bupt.edu.cn
mailto:wdwang@bupt.edu.cn
https://doi.org/10.1016/j.comnet.2023.109794
https://doi.org/10.1016/j.comnet.2023.109794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109794&domain=pdf

Computer Networks 230 (2023) 109794P. Li et al.
Fig. 1. Caching replacement process.

studied in many scenarios. Although a cache admission policy can be
combined with an eviction policy from different scenarios to form the
caching replacement strategy, these policies have distinct standards
for determining the content value. When making caching decisions,
using different standards to admit and remove contents will result
in repeated replacement, i.e., content that has been admitted by the
admission policy may be immediately deleted by the eviction policy.
Such back and forth replacement will inevitably reduce the hit rate and
subsequently increase users’ waiting time. The reason is that evicted
content might be more likely than admitted content to be accessed in
the future, leading to missed requests for such content (eviction one).
We call such a problem ‘‘Standard-Conflict ’’. (See Section 3.2.2)

To solve these two problems, we introduce two modules for ex-
isting caching replacement strategies. For the Fetching-Gap problem,
we propose Delayed-Eviction module, which will not execute eviction
until the fetching is completed, ensuring that the accessed contents
during the fetching period are not evicted. For the Standard-Conflict
problem, we propose Unified-Standard module to measure the access
probability of the requested content with a new value function as well
as contents cached in the edge server. The module can ensure that
the high-probability contents in access process will not be evicted in
the following eviction process. Then we integrate these two modules
together and propose a two-layer caching framework Adele using A3C
algorithm. We implement Adele and several existing algorithms. The
results show that the hit rate and the transmission latency of the
algorithm with Adele integrated is about 31% higher and 37% lower
than the state-of-the-art solution, respectively.

The main contributions of this paper are listed as follows:

• First, we disclose two problems Fetching-Gap and Standard-Conflict
of existing caching strategies in edge network. In Fetching-Gap,
strategies ignore the fetching time, during which there may
still be multiple access requests to the evicted contents. In
Standard-Conflict , under mixed strategies with different stan-
dards, some contents with higher access probability than admitted
ones may be evicted. These problems significantly affect caching
performance.

• Second, to address these two problems, we propose two cor-
responding modules Delayed-Eviction and Unified-Standard for
existing caching strategies. In addition, we integrate these mod-
ules into Adele, which is a caching replacement strategy proposed
in this paper based on A3C algorithm, to improve the caching
performance.
2

• Third, we conduct a series of experiments with real data from
ChuangCache Company. By numerical results, we reveal two
modules’ advantages in improving caching performance. And we
demonstrate the proposed solution Adele outperforms existing
caching replacement strategies in hit rate & byte hit rate and
transmission latency.

The remainder of this paper is organized as follows. The cur-
rent edge caching replacement strategies is summarized in Section 2.
Section 3 introduces the background and motivation of this paper.
Section 4 presents two modules and the framework of Adele. Section 5
demonstrates the setting up of Adele prototype and shows exten-
sive experiment results from real data evaluations. Finally, Section 6
concludes this work.

2. Related work

Even small hit rate improvements cause significant speedup, as
in the Facebook study there is a 1% improvement of hit rate with
374 μs, there is 35% speedup with 278 μs [12]. In order to improve
user’s QoS, it is inevitable that a large number of researchers focus on
the improvement of hit rate for caching. Typical analysis of caching
systems either focuses on content admission, which decides whether
to cache the request content (admission policy), or content eviction to
decide which content to evict when the cache is full (eviction policy).
Table 1 summarizes some of the most relevant works, which have been
instrumental in advancing the current research.

2.1. Admission policy

The edge servers have limited caching capacity, so only a tiny
amount of content can be stored. Researchers recognize that not all
contents should be stored in edge servers as the demand for various
types of content varies, depending on its freshness, frequency, size, etc.
In the past few years, there has been an abundance of attention given
to creating an admission policy by various scholars.

Akamai [20] counted that out of the approximately 400 million
files requested on a server cluster over two days, nearly three-quarters
were only requested once. The Cache-on-second-hit rule algorithm
(SecondHit) [13] was implemented due to this feature, caching the
content only after it had been asked for twice. Caching admission
policies based on request frequency also include TinyLFU [14], which
determines whether the content is cached in the edge server by the
freshness of the requested content. SecondHit and TinyLFU have im-
proved the hit rate significantly, but they ignored the fact that there
was a noticeable difference in the content size. Daniel et al. proposed
AdaptSize [15] based on a novel Markov cache model, the first adaptive,
size-aware cache admission policy for hot contents that achieves a high
hit rate, even when object size distributions and request characteristics
vary significantly over time. Considering the above mentioned factors
about frequency, size, and recency, Vadim et al. proposed a novel
algorithm called RL-Cache [17] based on model-free reinforcement
learning to decide whether or not to cache a requested content in
CDNs. In certain situations, apart from these factors that influence the
content hit rate, the content publisher’s information and the content’s
subject topic are also considered. Yu Guan et al. proposed a novel
content-aware cache admission (CACA [16]) policy based on a tree-
structure reinforcement learning model for video content edge caching.
It determined whether caching of the requested content in the edge
server by the video’s characteristics, such as its category, author, and
length, rather than the request pattern.

These admission policies contribute significantly in improving
caching hit rate. The corresponding content eviction policies have been
more extensively studied.

Computer Networks 230 (2023) 109794P. Li et al.

(

Table 1
Some related works.

Year Strategy Admission Eviction Major attribution Goal

2015 SecondHit [13] ✓ × Frequency Hit rate, Latency
2017 TinyLFU [14] ✓ × Frequency Hit rate
2017 AdaptSize [15] ✓ × Size Hit rate
2019 CACA [16] ✓ × Author, Item, Recency Hit rate
2019 RL-Cache [17] ✓ × Frequency, Size, Recency Hit rate

2018 LeCaR [4] × ✓ Frequency Hit rate
2018 LHD [18] × ✓ WorkLoads Hit rate
2020 LRB [5] × ✓ Frequency, Size, Recency Byte hit rate, Latency

2016 PopCaching [19] ✓ ✓ Frequency Hit rate
2020 RL-Belady [6] ✓ ✓ Frequency, Size, Recency Hit rate
2.2. Eviction policy

Numerous scientific eviction policies are widely deployed, such as
traditional methods First Input First Output (FIFO), Least Recently Used
LRU), Least Frequently Used (LFU), and their variants [2–4,21–23].

Recently, researchers have proposed many eviction policies in different
perspectives, such as location [24], size [18], and others [24–37].

Giuseppe et al. proposed a general framework called LeCaR [4],
which is based on two fundamental eviction policies: LRU and LFU, and
is used the ML technique of regret minimization to improve the caching
performance. Nathan et al. proposed a novel eviction policy for key–
value caches, which was named LHD [18]. It predicted each content’s
expected hits-per-space-consumed (hit density) and filtered contents
that contribute little to the cache’s hit rate to fit different workloads
in a lifetime for improving the hit rate. A content eviction policy
LRB [5], combining machine learning technology to simulate Belady
algorithm, was proposed to close to the optimal hit rate. LRB obtained
Belady boundary and good decision ratio as an eviction quality metric,
which had enabled it to take a fundamentally new approach that
approximated Belady ’s MIN algorithm to improve the caching byte hit
rate and reduce transmission latency.

Although LRB and other strategies can improve hit rate to reduce
latency, they do not explicitly consider the missing content needs
some time to be fetched from origin. The edge server still receives
some request information while fetching missed content. These eviction
policies ignore the information in choosing the evicted content, which
affects the caching performance of the edge server.

2.3. Eviction and admission

A full caching replacement strategy consists of an admission process
and an eviction process. Although a complete caching replacement
strategy can consist of an admission policy and an eviction policy from
different scenarios, it has lower caching performance and poor QoS
than the complete caching replacement strategy proposed from the
same scenario. Now, few researchers have come up with a complete
caching replacement strategy.

Li et al. presented a novel caching replacement method, namely
PopCaching [19], which learned the popularity of the content and used
it to determine which content it should store and which it should
evict from the cache. Gang Yan et al. proposed a novel framework RL-
Bélády [6] that can simultaneously learn both content admission and
content eviction for caching in CDNs. It first put forward a lightweight
architecture for predicting content next request time. Then it leveraged
reinforcement learning (RL) to learn the time-varying content popu-
larities for content admission and developed a simple threshold-based
model for content eviction.

Although PopCaching and RL-Bélády can consider both content ad-
mission and content eviction with same factors, but they ignore some
information generated while fetching the missing content.
3

3. Background and motivation

In this section, we first introduce the background of caching re-
placement in the edge server, shown in Section 3.1. Then, we present
the motivation of this paper in Section 3.2. Finally, we analyze some
performance metrics to measure the caching replacement strategy in
Section 3.3.

3.1. Background

To reduce transmission latency, more edge servers closer to users
have been built by equipment service providers (ESPs), including CDNs,
base stations, and others. Rather than transmitting data over long
distances from the cloud to the users, these edge servers can facilitate
shorter-distance transmission from the edge to the users. The transmis-
sion time for data can be substantially decreased, thus reducing the
amount of time users have to wait. However, these edge servers have
a limited storage capacity, so we must pick out some popular contents
to cache to maximize edge server performance. Additionally, as user
request pattern change, the popular content will follow suit. Therefore,
it is necessary to design an dynamic caching replacement strategy for
edge caching system.

Fig. 2 shows the edge caching system including USER, EDGE
SERVER, and CLOUD. User 𝑖 can request any content 𝑐𝑖,𝑡 to the edge
server 𝑒 at time 𝑡. The content requested is stored in the cloud 𝑜,
whether it is or is not cached in the edge server. If edge server caches
the requested content 𝑐𝑖,𝑡, the request state is hit and the transmission
latency is 𝑙𝑒𝑖,𝑐𝑖,𝑡 . Otherwise, the state is miss and the transmission latency
is 𝑙𝑜𝑖,𝑐𝑖,𝑡 . So, we denote the latency of request content 𝑐𝑖,𝑡 from user 𝑖 at
time 𝑡 by equation

𝑙𝑐𝑖,𝑡 =

{

𝑙𝑒𝑖,𝑐𝑖,𝑡 , if state is hit
𝑙𝑜𝑖,𝑐𝑖,𝑡 , if state is miss. (1)

It is obvious that 𝑙𝑒𝑖,𝑐𝑖,𝑡 < 𝑙𝑜𝑖,𝑐𝑖,𝑡 . To put it briefly, the magnitude of
the usual transmission delay is mainly determined by the state of the
content requested by the user, and this state reflects the user’s level
of QoS. In order to enhance QoS, we should design an appropriate
caching replacement strategy to maximize the hit rate of the edge
server. However, this is not easy due to the following two problems
described in Section 3.2.

3.2. Motivation

We present two new problems: Fetching-Gap and Standard-Conflict ,
as well as two key observations, outlined in Sections 3.2.1 and 3.2.2,
following a comprehensive examination of relevant literature.

3.2.1. Fetching-Gap
When the requested content is miss, edge server will send a

fetching request to a remote cloud. The fetching process takes some
non-zero transmission time (fetching-time) [7,8]. It is worth noting
that the key component of the fetching-time is the transmission time

Computer Networks 230 (2023) 109794P. Li et al.
Fig. 2. Edge caching system.
Fig. 3. Caching replacement strategy LFU has different evicted contents at different
times to make a caching decision. t1 is the time at which a request for content C
arrives, and t2 is the time at which a fetching for content C from cloud arrives.

for the miss content in this paper. Although high concurrency re-
quests in some applications affect fetching-time, there are a large
number of proven techniques & solutions [38] that are widely used in
commercial/industrial distributed systems to reduce the concurrency
processing time. In this paper, fetching-time is not determined by the
number of requested contents. Current caching replacement strategies
evict content to make room for the coming fetching content immedi-
ately when finding a cache miss. But the evicted content will likely
be reaccessed during the fetching-time, resulting in another content
miss. It is because that strategies lack the information generated during
the fetching-time to make a caching decision, which may result in the
evicted content being requested one during this period.

Problem 1. The edge server fetches the missing content from the
cloud, meanwhile, receives many requests by users. The information
of requested contents is not considered in the existing cache evic-
tion policies and may affect the caching performance, which is called
Fetching-Gap.

The eviction content chosen by the same policy varies at different
times. Fig. 3 shows that different contents are chosen as eviction ones
by LFU at two times. We set the arrival time of missed content C
as the first decision time 𝑡1. Evicting content A, subsequently leaving
the cache space with two contents: B and C, occurred simultaneously.
When the requested content A arrives in edge server at 𝑡2, it is miss.
Otherwise, if the decision time is 𝑡2 as the second point, content B is
4

chosen as eviction content, and then contents A and C in the cache
space. When the edge server receives content A, the latter has a higher
hit rate (1>0) than the former.

Inspiration 1. The delayed caching decision has a higher cache hit rate
than the immediate decision because the former gets more information about
the content of the request during the fetching-time than the latter. We call
it Delayed-Eviction.

3.2.2. Standard-Conflict
Although a complete caching replacement strategy can be con-

structed by blending cache admission and eviction policies from various
scenarios, its efficiency could be better and further enhanced. Due to
these blending caching replacement strategies, the admission and evic-
tion policies are considered separate entities and include two different
standards. Assuming that the future access potential of the requested
content and the content in the cache is evaluated by different standards.
It means that there may be admission content with a lower real future
access probability than the evicted one or non-admission content with
a higher real future access probability than any contents cached in the
edge server. The situations lead to repeated accesses and evictions of
the requested content, affecting the damage hit rate. Therefore, it is
necessary to compare the value of access and caching contents with a
consistent standard.

Problem 2. Due to loss comparison between the two type contents (re-
quest and caching contents) with the same standard, it may cache the
low value in edge server, then lead to evict contents frequently. These
may affect the caching performance, which is called Standard-Conflict .

Fig. 4 describes the different decision results in two caching replace-
ment strategies. The first one is SecondHit (cache admission policy) &
LFU (cache eviction policy). The other one makes the cache decision
based on the total frequency of content requested. At 𝑡1, the edge server
receives the requested content C and discovers that the state of content
C is missing. For the first strategy, content C is allowed by SecondHit
(3 > 2). Then content A is chosen as eviction one via LFU. The caching
space has two contents: C and B. When the next requested content A
arrives in edge server, the hit rate is 0. For the second strategy, content
C, as eviction one, is not allowed, by comparing total frequency from
all contents, including requested and cached now. The contents cached
in storage space are A and B. The latter has a higher hit rate (1 > 0)
than the former when the edge server receives the requested content
A.

Computer Networks 230 (2023) 109794P. Li et al.

m
c
c

F
a

3

r
(
L
T
d
s
T

c
c
w
w
w
u
s
a
p
t
r

4

U
w
i

Fig. 4. Different contents are evicted by unified standard and mixed standard. .

Table 2
An example for metrics comparison: HR & TL.

content-size C-2 A-1 B-3

request size 1
2

1 2 1
4

1
2

1 1 2 3

HR CHR 1 1 0 1 1 1 1 0 0
BHR 1 1 7/8 1 1 1 1 15/16 19/24

TL CTL 0 0 2𝜇 0 0 0 0 2𝜇 3𝜇
BTL 0 0 1/4𝜇 0 0 0 0 1/8𝜇 5/8𝜇

Inspiration 2. A caching replacement strategy with a unified standard is
ore beneficial than others with a mixed standard generated from separate
ache admission and cache eviction policies from different scenarios. We
all it Unified-Standard.

To sum up, we adopt two inspirations to address these problems:
etching-Gap and Standard-Conflict , by two modules: Delayed-Eviction
nd Unified-Standard introduced in Section 4.

.3. Performance metric

There are many metrics to measure the performance of caching
eplacement strategies. It includes common Hit Rate (HR) metrics
Content Hit Rate (CHR) and Byte Hit Rate (BHR)) and Transmission
atency (TL) metrics (Content Transmission Latency (CTL) and Byte
ransmission Latency (BTL)). Fig. 5 presents the caching state with
ifferent content granularity. To find a suitable metric for the current
cenario, we make an example to compare these metrics and its HR &
L with different metrics are shown in Table 2.

The content sizes of A, B, and C are 1, 3, and 2 respectively. The
ached content sizes of three contents are 1, 19∕8, and 7∕4. When
ontent C requested sizes are 1∕2 and 1, content and Byte are identical
hether in two category metrics with HR and TL. When content A
ith size 3 and content B requested size is 1, the result is the same
ith above, due to the cache contains sub content requested by the
ser. However, neither HR nor TL is the same at other request sizes,
uch as when content B requested size is 2. CHR, and BHR are 0,
nd 15∕16 respectively. CTL, and BTL are 2𝜇, and 1∕8 𝜇, where 𝜇 is
resent the cost time for fetching data with size 1. It is obvious that
he results become more accurate as the granularity of the metrics is
efined. Therefore, BHR and BTL metrics are more accurate than others.

. Design

In this section, we propose two modules Delayed-Eviction and
nified-Standard in Sections 4.1 and 4.2. Then, we introduce the frame-
ork of caching replacement strategy Adele and describe it detailedly

n Section 4.3.
5

Fig. 5. An example for metrics comparison: caching state.

4.1. Delayed-Eviction

The edge server receives large amounts of request information
generated during the fetching-time. In order to reduce the eviction
of requested content generated during this period, information about
these requests should be captured and taken into account by whichever
caching replacement strategy is used. While large amounts of informa-
tion can be captured through Delayed-Eviction, the question of when to
select evicted content is a key concern. It is because that the selection
of cache evicted content also takes some time. If the evicted content is
selected too late, it is possible that missing content from the cloud has
been fetched but has no cache space for storing it. As a result, it needs to
be re-fetched, which increases user waiting time. In another situation,
if the evicted content is selected too early, incomplete information
will be collected during the fetching time, which may lead to the
request for the evicted content. To address this issue, we investigate
the computation time of the cache eviction policies and find that most
of the computation time is short and completely negligible. Therefore,
we set the selected time of cache-evicted content as the arrival time of
the first frame for the fetched content returned.

4.2. Unified-Standard

We can effectively ensure that contents cached in edge server
reaches a high future access value by setting an Unified-Standard for
measuring to the content value. This paper’s future access value has
been established based on three key factors of content: size, frequency,
and timeliness. The most intuitive attribution reflecting the value of
future visits is the access frequency of historical. It is well known that
the more frequently each content is accessed does not mean that it is of
higher value for two reasons. The first is pretty obvious: for the same
frequency of visits, content with a smaller size is of higher value due to
the smaller one cached occupying a tiny space than another. Thus, we
considered the single-byte access frequency to reflect the content access
value. The other one is that continuous accumulation of the frequency
of each content will lead to a high frequency for the retired one, which
will be mistaken as the hot one at the moment.

To avoid this phenomenon, we add a sliding window based on a
period time 𝛿𝑡 to count the access frequency for ensuring that the
content value is fresh. In summary, the unified standard for measuring
the content 𝑖 value 𝑣𝑡𝑖 in time 𝑡 is

𝑣𝑡𝑖 =
𝑎 × 𝜏𝑖 × 𝑒

∑𝐹𝑡−𝛿𝑡,𝑡
𝑓=1

𝐹𝑖,𝑓
𝐹𝑡−𝛿𝑡,𝑡

𝑡−𝛿𝑡,𝑡 . (2)

𝜏𝑎

Computer Networks 230 (2023) 109794P. Li et al.
Fig. 6. The framework of Adele.
𝑎 is a coefficient variation. 𝜏𝑖 presents the size of content 𝑖 and 𝜏𝑡𝑎
presents the total size of contents requested during 𝛿𝑡 to 𝑡. 𝐹𝑡−𝛿𝑡 in-
dicates the total number of requests. 𝐹𝑖,𝑓 presents the access times of
content 𝑖 in the 𝑓 th request during 𝑡 − 𝛿𝑡 to 𝑡. If the 𝑓 th request is not
content 𝑖, 𝐹𝑖,𝑓 equals 0. In particular, when the volume of requests is
small, it also means that users send fewer requests during the fetching
time. All content values can be calculated by Eq. (2). The value of
contents mainly considered by the request number is very close when
the number of requests is small. It is difficult to separate the high-value
contents from those cached ones, so it is challenging to further improve
the hit rate. As a result, we decide to compute the content value using a
straightforward and useful function: the frequency of content requests
(within the sliding window 𝛿𝑡) divided by the size of the content as
𝑣𝑡𝑖 =

𝑓𝑖
𝜏𝑖

. High-value content can be easily distinguished from low-value
content by this function. Content’s value is only determined by its size
and frequency; it is unaffected by the number of requests from other
contents.

4.3. Framework

The two problems faced in this research are addressed by the
Delayed-Eviction and Unified-Standard modules, which can enhance the
performance of caching replacement strategies currently in existence.
This paper suggests an unique caching replacement framework Adele to
more effectively leverage the benefits of both modules. The framework
consists of four phases: Initialization, Collection Information, Caching
Decision and Updating model, as shown in Fig. 6.

• Initialization. In the initialization phase, we adopt LRU as the
eviction policy and admit all request contents in the edge server.
Then, we initialize the global network and establish the local
networks of each worker. It is worth noting that the selection
probability of each action is equal at initialization.

• Collecting Information. When the length of request sequence
recorded by server is enough for two sliding time windows,
we collect the request information during the fetching-time and
append it to historical request information. Then, we divide
historical request information into two sets: high-value and low-
value. Finally, we choose the low-value set as the eviction
candidate set.

• Caching decision. Based on the collection information phase,
the eviction candidate set obtained as A3C model input contents.
Then, Adele performs A3C model to make a caching decision,
which is choose the eviction content and remove it.

• Updating model. To keep the model fresh, the worker up-
dates global network parameters with intervals of 𝑇 seconds by
executing the push operation.
6

If the requested content is hit, the edge server returns it to the user.
Else, the edge server executes Caching decision to decide whether to
cache this content and which contents to evict as Algorithm 1. With
intervals of 𝑇 seconds, Adele updates the global network parameter
with Algorithm 2. Adele is summarized as the pseudo-code shown
in Algorithm 3. The detailed design of the cache decision based
on A3C algorithm is consist of three parts: eviction candidates set,
state–action-reward, and A3C network.

Algorithm 1: Caching decision
Input: missing content information; cache status; caching

action selection policy 𝜋 from the actor in global
network;

Output: eviction candidate set 𝑒𝑐𝑠
1 Get M candidate eviction sets (𝐶1, 𝐶2,… , 𝐶𝑀) randomly from

content low value content, and the total size of each sets needs to
be greater than 𝑠𝑖𝑧𝑒𝑚𝑖𝑠𝑠;

2 Get 𝑣𝑡𝑚𝑖𝑠𝑠 by equation (3);
3 for 𝑖 ∈ do
4 Get 𝑣𝑡𝑖 by equation (3);
5 end
6 𝑠𝑡 = [𝑣𝑡𝑚𝑖𝑠𝑠, 𝑣

𝑡
1, 𝑣

𝑡
2,… , 𝑣𝑡𝑚];

7 Get 𝑎𝑡 according to policy 𝜋(𝑎|𝑠; 𝜃);
8 if 𝑎𝑡 = 0 then
9 return null;
10 end
11 𝑒𝑐𝑠 = 𝐶𝑎𝑡 ;
12 return 𝑒𝑐𝑠;

4.3.1. Eviction candidates set
The essence of the caching replacement strategy is to select low-

value content as the eviction content by comparing the value of each
content cached in edge server. Each comparison of access value for each
content needs to be recalculated. However, there may be content with
the same value before and after the calculation, affecting the calcula-
tion speed and reducing the evicted content’s selection efficiency. We
additionally find that high-value content, whether or not its value is
updated in real-time, has no effect on the selection of content to be
evicted. It is because that the high-value content is far more valuable
than other content at some time. Therefore, in order to improve the
calculation speed and the selection efficiency of evicted contents, all
contents cached in storage space are divided into two sets (𝑠𝑒𝑡1 and
𝑠𝑒𝑡2) according to contents’ value.

𝑠𝑒𝑡1 contains contents with lower value, accounting for 𝜁% all
contents. Another set 𝑠𝑒𝑡2 contains other contents, that is, contents
with higher value. The 𝑠𝑒𝑡1 is the eviction candidate set for selecting
the eviction content. In this way, only the value of the content in

Computer Networks 230 (2023) 109794P. Li et al.

c
i
c
t
c
i
e
p

v
e

𝑉

the candidate set needs to be calculated each time when selecting the
eviction content, thus significantly reducing the amount of computation
and the range of eviction options is much smaller. Although it can
reduce the amount of calculations, the value of the content is somewhat
time-sensitive because the requested content is dynamic. In order to
ensure that the low-value content is in the candidate set, so the values
of both sets 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2 need to be updated periodically. In addition,
to avoid frequent eviction of admission content, the admission is stored
in the high-value set 𝑠𝑒𝑡2.

Although some contents with a high value are filtered out in the
andidate set by the above steps, a large number of contents still exist
n the candidate set, which effect the efficiency in selecting the evicted
ontent. Therefore, to ensure efficiency in selecting the evicted content,
his paper adopts the A3C algorithm as the main component of the
ache eviction strategy. The A3C algorithm essentially puts Actor–Critic
nto multiple threads for simultaneous training and has a high training
fficiency, which is suitable for selecting the evicted content in this
aper.

Algorithm 2: Updating model
Input: requests sequence; initial cache status; global network

parameters 𝜃 𝑎𝑛𝑑 𝜔;
Output: 𝑑𝜃 and 𝑑𝜔

1 Reset gradients 𝑑𝜃 ← 0 𝑎𝑛𝑑 𝑑𝜔 ← 0;
2 pull global parameters 𝜃 𝑎𝑛𝑑 𝜔 to synchronize local parameters

𝜃′ = 𝜃 and 𝜔′ = 𝜔;
3 𝑡 = 0;
4 while 𝑡 ≠ 𝑡𝑚𝑎𝑥 do
5 if miss then
6 Caching decision (Algorithm 1)
7 end
8 𝑟𝑡 = Byte hit rate in future timeslot T ;
9 𝑡 ← 𝑡 + 1
10 end
11 𝑄𝑡 = 𝑉 (𝑠𝑡;𝜔);
12 for 𝑖 𝑖𝑛 {𝑡 − 1, 𝑡 − 2, ..., 0} do
13 𝑄𝑖 = 𝑟𝑖 + 𝛾𝑄𝑖+1;
14 Accumulate gradients of the actor’s parameter 𝜃′:

𝑑𝜃 ← 𝑑𝜃 + ∇𝜃𝑙𝑜𝑔𝜋(𝑎𝑖|𝑠𝑖; 𝜃′)(𝑄𝑖 − 𝑉 (𝑠𝑖;𝜔′));
15 Accumulate gradients of the critic’s parameter 𝜔′:

𝑑𝜔 ← 𝑑𝜔 + 𝜕(𝑄𝑖 − 𝑉 (𝑠𝑖;𝜔′))2∕𝜕𝜔′;
16 end
17 return 𝑑𝜃 and 𝑑𝜔

4.3.2. State, action and reward
A3C is a reinforcement learning algorithm and includes state space,

action space, reward, et al. In this subsection, the state space, action
space and reward of our algorithm are given as follows:

• State Space. When the first frame of the missing content has
been fetched, we randomly select multiple contents combinations
in 𝑠𝑒𝑡1 to generate 𝑚 candidate eviction sets, whose total size
is larger than the missing content. We set the value of missing
content and the total value of contents in each candidate eviction
set as state 𝑠𝑡, which can be expressed as 𝑠𝑡 = [𝑣𝑡𝑚𝑖𝑠𝑠, 𝑣

𝑡
1, 𝑣

𝑡
2,… , 𝑣𝑡𝑚].

To integrate Delayed-Eviction and the Unified-Standard module, we
expand the content’s value based on Eq. (2), which is demon-
strated in Eq. (3). 𝜖 presents the fetching time of the miss content
from cloud to the edge server. When the volume of requests is
small, the content value using a function: the frequency of content
requests (within 𝛿𝑡 + 𝜖) divided by the size of the content.

𝑣𝑡𝑖 =
𝑎 × 𝜏𝑖 × 𝑒

∑𝐹𝑡−𝛿𝑡,𝑡+𝜖
𝑓=1

𝐹𝑖,𝑓
𝐹𝑡−𝛿𝑡,𝑡+𝜖

𝜏𝑡−𝛿,𝑡+𝜖𝑎
. (3)
7

𝑄

In addition, other properties of each set can be appended to
the state so as to have more abundant information in eviction
selection.

• Action Space. The length of the action space is 𝑚+1. Considering
the Unified-Standard, available actions contain two types. The first
one, i.e., 𝑎𝑡 = 0, means that the requested content is not admitted
to the cache. The other one, i.e., 𝑎𝑡 ∈ {1, 2,… , 𝑚}, means that the
missing content is admitted to the cache and the 𝑎𝑡th candidate
eviction set is to be evicted from cache. We select the action with
the highest probability as the action to be executed in practice.
The probability of the action is derived from the policy 𝜋(𝑎 |

𝑠; 𝜃) = 𝑃 (𝑎 = 𝑎𝑡 | 𝑠 = 𝑠𝑡). Compared with most algorithms that
make decisions one by one during eviction selection, we directly
make eviction decisions for a set of eviction candidates.

• Reward. As this paper mentioned, a higher byte hit rate (hit rate)
means better caching performance. So, the reward 𝑟𝑡 of action 𝑎𝑡
is defined as the byte hit rate (hit rate) in the following sliding
time window after 𝑎𝑡.

4.3.3. A3C network
A3C algorithm contains a global network and some worker net-

works. The global network structure is the same as each worker
network, which is Actor–Critic structure. The only difference is that
the global network does not need to be trained and is only used to
store the parameters of the Actor–Critic structure. The actor-network
and the critic-network form the global network. The actor-network aims
to optimize the caching policy 𝜋(𝑎 | 𝑠; 𝜃), which means choosing better
actions. The critic-network aims to improve the accuracy of the value
function, which evaluates the actor’s action selection policy.

Algorithm 3: Adele
1 initialize cache status and the global A3C network parameter 𝜃, 𝜔;
2 ▵ 𝑇 = 0;
3 while request arriving do
4 Record the information of accessed content ;
5 Update ▵ 𝑇 ;
6 if miss then
7 Fetch accessed content from the origin server ;
8 if The first flame of the content arrives then
9 𝑒𝑐𝑠 ← Caching decision (Algorithm 1) ;
10 if 𝑒𝑐𝑠 ≠ null then
11 Evict 𝑒𝑐𝑠 from caching space;
12 Cache the requested content ;
13 end
14 Update cache status;
15 end
16 end
17 if ▵ 𝑇 >= 2𝑇 then
18 create a worker thread;
19 𝑑𝜃, 𝑑𝜔 ← Updating model (Algorithm 2) ;
20 𝜃 ← 𝜃 − 𝛼𝑑𝜃;
21 𝜔 ← 𝜔 − 𝛽𝑑𝜔;
22 ▵ 𝑇 = 0;
23 end
24 Return the requested content to user
25 end

To establish A3C network, we first define the value function 𝑉 (𝑠𝑡)
and the action value function 𝑄(𝑠𝑡; 𝑎𝑡). Utilizing n-step sampling, the
alue function and the action value function can be respectively
xpressed as

(𝑠𝑡) = 𝐸𝜋 [𝑟𝑡 + 𝛾𝑡+1 +⋯ + 𝛾𝑛𝑉 (𝑠𝑡+𝑛)]. (4)

(𝑠 , 𝑎) = 𝑟 + 𝛾 +⋯ + 𝛾𝑛𝑉 (𝑠). (5)
𝑡 𝑡 𝑡 𝑡+1 𝑡+𝑛

Computer Networks 230 (2023) 109794P. Li et al.
Table 3
Base algorithms.

Algorithm Admission Eviction Delayed-
Eviction

Unified-
Standard

LRU × ✓ × ×
LFU × ✓ × ×
LRB × ✓ × ×
RL-Cache ✓ × × ×
RL-Cache-LRU ✓ ✓ × ×
RL-Belady ✓ ✓ × ✓

LRU-delay × ✓ ✓ ×
LFU-delay × ✓ ✓ ×
LRB-delay × ✓ ✓ ×
RL-Cache-LRU-delay ✓ × ✓ ×
RL-Belady-delay ✓ ✓ ✓ ×

LRU-LRU ✓ ✓ × ✓

LFU-LFU ✓ ✓ × ✓

LRB-LRB ✓ ✓ × ✓

RL-Cache-RL-Cache ✓ ✓ × ✓

RL-Belady ✓ ✓ × ✓

Table 4
DateSet.

Trace num Total request Total content Total time AIRT

1 824,116 359,964 1 h 4.37 ms
2 5,201,205 817,039 1 h 0.7 ms
3 7,996,242 937,964 1 h 0.45 ms

To measure a action advantage, we define the advantage value
expressed as

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉 (𝑠𝑡), (6)

where 𝑉 (𝑠𝑡) is the expectation of 𝑄(𝑠𝑡; 𝑎𝑡) about all actions and rep-
resents the average quality of all state–action. When 𝐴(𝑠𝑡, 𝑎𝑡) > 0,
the action’s profit is higher than the average expected profit of other
actions in state 𝑠𝑡.

The critic-network has a fully connected layer whose input is the
state and output is the state value 𝑉𝐸 (𝑠;𝜔). The parameter 𝜔 is updated
by a gradient descent method as follow

𝑑𝜔 ← 𝑑𝜔 + 𝜕(𝐴(𝑠𝑡, 𝑎𝑡; 𝜃′, 𝜔′))2∕𝜕𝜔′. (7)

The actor adopts the policy 𝜋 with parameter 𝜃 to generate the action
and interact with the environment. The actor-network also has a fully
connected layer whose input is the state and output is 𝜋(𝑎 | 𝑠; 𝜃). The
parameter 𝜃 of the policy is updated with a gradient ascent method as
follow

𝑑𝜃 ← 𝑑𝜃 + ∇𝜃′𝜋(𝑎𝑡|𝑠𝑡; 𝜃′)𝐴(𝑠𝑡, 𝑎𝑡; 𝜃′, 𝜔′). (8)

We can improve the estimation accuracy of the value function and the
probability of choosing a high-profit action based Eqs. (7) and (8).

A3C performs training by creating multiple online learning threads
named workers, which have two main operations. One is fetch, which
directly assign the parameters of the global network to the local net-
work in the worker. The other is a push, which updates the parameters
𝜃&𝜔 of the global network by Eq. (9). 𝛼 and 𝛽 are the learning rate of
actor and critic respectively.

𝜃 = 𝜃 − 𝛼𝑑𝜃, 𝜔 = 𝜔 − 𝛽𝑑𝜔 (9)

5. Evaluation

In this section, we firstly introduce the experiment setting in Sec-
tion 5.1. Then, we illustrate two modules’ advantages for existing
algorithms in Section 5.2. Finally, in Section 5.3, we evaluate our
approach Adele to compare some state-of-arts algorithms with real
traces (Section 5.1).
8

5.1. Experiment setting

In this subsection, we introduce five algorithms as baselines and the
information detailed of the dataset in experiments.

5.1.1. Simulation environment
The simulation is implemented by python on the Ubuntu 18.04.5-

LTS operating system. The simulation devices used in this paper are
three servers with the same configuration. These devices is equipped
with 64G of RAM, Inter(R) Xeon(R) Gold 5122 CPU @ 3.60 GHz CPU,
GeForce RTX 2080 GPU, and 1TB hard disk.

5.1.2. Base algorithms
We compare the caching performance of our algorithm Adele with

some representative algorithms: LRU, LFU, LRB, RL-Cache, RL-Belady
and other variants shown in Table 3. For example, LRU is an eviction
algorithm. LRU-delay is an eviction algorithm with Delayed-Eviction
module. LRU-LRU is not only an eviction algorithm but also an admis-
sion algorithm with Unified-Standard module. Other algorithms use the
above corresponding representation rules. The only special algorithm
is RL-Cache-LRU by mixing cache admission and eviction algorithm
without Delayed-Eviction and Unified-Standard.

5.1.3. Dataset
The dataset conclude three traces from real company ChuangCache

in China and shown in Table 4. The three traces represent the re-
quest number of Low, Medium, and High frequencies with an average
inter-request time (AIRT) of 4.37 ms, 0.7 ms and, 0.45 ms, respectively.

5.2. Modules performance

To verify that two modules proposed in this paper can improve the
performance for existing algorithms, we make a series of experiments. A
detailed analysis of experiments are presented separately in this section
for Delayed-Eviction and Unified-Standard.

5.2.1. Delayed-Eviction
According to statistics [7], the AIRT is 1 μs and the typical fetching

times include 1 ms, 10 ms and 200 ms for three use cases: Intra-data
center proxy, nearby data center, and remote data center in CDN trace.
So, the frequency range of requests generated during fetching time is
[1,000, 200,000] in each ms. In our dataset, the min AIRT is 0.45 ms
and the frequency range of requests generated during fetching time is
about [0.2, 450]. These two frequency ranges are far apart.

To simulate the high-frequency scenario, we scale down the AIRT
by scaling up the fetching time (5s), and the number range of requests
is about [1,100, 12,000]. Even to compare the results under different
AIRT, we set extra fetching times (1 s and 3 s) and measure the
byte hit rate of several original algorithms with Delayed-Eviction under
different cache sizes and data sources, as shown in Fig. 7. We choose
LFU, LRU, RL-Cache-LRU, and RL-Belady as the original algorithms. The
cache sizes are 0.5G, 1G, 2G, 4G, and 8G. The datasets are from traces
numbered 1, 2, and 3 and the result shown in Fig. 7(a), Fig. 7(b),
and Fig. 7(c) respectively. We can easily find that the cache byte hit
rate gradually increases with increasing fetching time under the same
algorithm. The cache byte hit rate also increases with the increase of
cache size.

To demonstrate that delayed eviction can provide a performance
improvement for all caching replacement algorithms, we compare the
byte hit rate and content hit rate under the same conditions with and
without this algorithm, as shown in Figs. 8 and 9. The comparison plots
show that the algorithm with Delayed-Eviction has improved both in
terms of byte hit rate and hit rate than the algorithm without Delayed-
Eviction, both for different data sets and cache sizes. Thus the module
has some performance improvement function for the existing caching
replacement algorithms.

Computer Networks 230 (2023) 109794P. Li et al.
Fig. 7. [Result Analysis: Delayed-Eviction] The byte hit rate of four existing algorithms with Delayed-Eviction at three fetching time in different traces.
Fig. 8. [Result Analysis: Delayed-Eviction] The hit rate comparison between using Delayed-Eviction and without Delayed-Eviction for four algorithms in different cache sizes with
three traces.
Fig. 9. [Result Analysis: Delayed-Eviction] The byte hit rate comparison between using Delayed-Eviction and without Delayed-Eviction for four algorithms in different cache sizes
with three traces.
Fig. 10. [Result Analysis: Unified-Standard] The hit rate comparison between using Unified-Standard and without Unified-Standard for four algorithms in different cache sizes with
three traces.
5.2.2. Unified-Standard
In order to verify that the Unified-Standard module can provide

performance improvements for all caching replacement algorithms, we
set Unified-Standard for each cache algorithm and compare them with
the same algorithm without Delayed-Eviction. We make experiments to
measure the cache byte hit rate and content hit rate with different
cache sizes and traces. The experiment results of hit rate and byte hit
rate are respectively shown in Figs. 10 and 11. We can find that the
improvement of byte hit rate and hit rate is more obvious in trace 2
(Figs. 8(b) and 9(b)) and 3 (Figs. 8(c) and 9(c)) compared to trace 1
9

(Figs. 8(a) and 9(a)). In particular, the performance of some algorithms
is not improved in the small cache size in trace 1.

5.3. Overall Performance

We conduct a series of experiments to show the hit rate and byte
hit rate performance. Figs. 12(a), 12(b), and 12(c) show that hit rates
of each trace with cache size 0.5G, 1G, 2G, 4G, and 8G. We can find
that the five comparison algorithms are unstable in their advantages
both in different data sources and in different cache sizes. But our
algorithm’s (red line) hit rate outperforms other algorithms in either

Computer Networks 230 (2023) 109794P. Li et al.
Fig. 11. [Result Analysis: Unified-Standard] The byte hit rate comparison between using Unified-Standard and without Unified-Standard for four algorithms in different cache sizes
with three traces.
Fig. 12. [System Performance] The hit rate of Adele and five existing solutions in different cache sizes with three traces.
Fig. 13. [System Performance] The byte hit rate of Adele and five existing solutions in different cache sizes with three traces.
Fig. 14. [System Performance] The transmission latency of Adele and five existing solutions in different cache sizes with three traces.
case. So, Adele’s hit rate is higher than other algorithms in the edge
server. At the same bandwidth, our algorithm’s CTL is less than other
algorithms’s also.

Figs. 13(a), 13(b), and 13(c) show that byte hit rates of each trace
with cache size 0.5G, 1G, 2G, 4G, and 8G. Our algorithm’s byte hit rate
outperforms other algorithms in either case. The result of the byte hit
rate is similar to the hit rate. Byte hit rate can highlight the accuracy of
the user waiting time even more than the hit rate. It is because that the
waiting time is affected by the missing content size. In conclusion, the
higher the byte hit rate is, the lower the waiting time is. Figs. 14(a),
14(b), and 14(c) show transmission latency in three traces with cache
size 0.5G, 1G, 2G, 4G, and 8G. Adele’s latency is lower than other
10
algorithms’ in each one. Therefore, the BTL and waiting time of our
algorithm is shorter than others at the same bandwidth. Finally, we
measured the average process time (0.26 ms, 0.27 ms, 0.31 ms, 0.36 ms,
0.4 ms, and 0.87 ms) per request item of six algorithms (LRU, LFU, LRB,
RL-Cache, RL-Belady, and Adele).

It is worth noting that as the cache size gradually increases, the
hit rate and byte hit rate slowly converges to the same value. When
the cache size becomes larger than a certain size, the advanced algo-
rithms will degenerate to LRU [39]. This is because with a large cache
capacity, contents that have been accessed more than twice will all
be kept in cache by LRU. Other advanced algorithms have a longer
eviction distance for content that appears more than twice compared

Computer Networks 230 (2023) 109794P. Li et al.

c
8

m
D
1
c
f
e
o
E
t
r
a
r
t
r
a
r
i
t
t
t

C
a
U
t
r
p
t
U
c
t
h

C

t
–
c
H
i
C
t
q

D

c
i

D

A

F
N
t
M
G
B

R

to only once. Thus, content that has only appeared once is eliminated
preferentially, which is quite similar to LRU [40]. So, in this paper,
when the cache size is near 8G, the comparison algorithm, including
LRU, is close to Adele. Since both hit rate and byte hit rate represent
ache performance, they also show such similarity in performance with
G cache capacity.

To verify the impact of these two modules on the cache perfor-
ance, we compared the hit rate & byte hit rate with and without
elayed-Eviction & Unified-Standard, as shown in Figs. 7–9 and 10–
1, respectively. And, we conduct a series of experiments in Adele
ombined two modules to show the hit rate and byte hit rate per-
ormance, as shown in Figs. 12–14. The comparison plots show that
xisting algorithms with Delayed-Eviction have improved both in terms
f byte hit rate and hit rate than existing algorithms without Delayed-
viction, both for different data sets and cache sizes. This indicates
hat Delayed-Eviction can boost the effectiveness of current cache
eplacement techniques. From Figs. 10–11, we can find that existing
lgorithms with Unified-Standard does not have a lower overall hit
ate or byte hit rate than ones without Unified-Standard. This means
hat Unified-Standard can improve the performance of existing cache
eplacement algorithms. Figs. 12–14 demonstrates that the proposed
lgorithm outperforms the competition in terms of hit rate and byte hit
ate. It has a shorter latency than the other algorithms. Another way to
dentify that our algorithm Adele has a larger hit rate improvement than
he value of the existing algorithms utilizing any module is to compare
he results (such as Figs. 8, 10, and 12). The above analysis also shows
hat the performance improvement of Adele is not only contributed by

one module, but both modules play a role.

6. Conclusion

In this paper, we find two problems Fetching-Gap and Standard-
onflict about caching replacement strategies at edge servers. To
ddress these problems, we propose two modules Delayed-Eviction and
nified-Standard for existing caching replacement strategies to improve

he caching performance. Based on the two modules, a new caching
eplacement strategy Adele is designed by the A3C algorithm in this
aper. We make a series of experiments to verify the performance about
wo modules and Adele. The result shows that Delayed-Eviction and
nified-Standard can improve the hit rate and byte hit rate for existing
aching replacement strategies. Simulations experiments demonstrated
he superiority of the proposed strategy Adele to the state-of-the-art in
it rate and byte hit rate.

RediT authorship contribution statement

Pengmiao Li: Research algorithm development, System architec-
ure design, Data analysis and/or interpretation, Validation, Writing

original draft, Writing – review & editing. Yuchao Zhang: Paper
onception, Design of research, Writing & review, Funding acquisition.
uahai Zhang: Research algorithm development, Data analysis and/or

nterpretation, Validation, Writing – original draft. Wendong Wang:
onceptualization, Supervision, Funding acquisition. Ke Xu: Review
he quality of papers, Writing & review. Zhili Zhang: Review the
uality of papers, Writing & review.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.
11
cknowledgments

The work was supported in part by the National Natural Science
oundation of China (NSFC) under Grant 62072047 and 62172054, the
ational Key R&D Program of China under Grant 2019YFB1802603,

he Key Project of Beijing Natural Science Foundation, China under
21030, and the BUPT-ChuangCache Joint Laboratory Project under
rant A2022164. The work of Pengmiao Li was supported in part by the
UPT Excellent Ph.D. Students Foundation, China under CX2019134.

eferences

[1] We Are Social & Hootsuite, 2022. https://wearesocial.cn/.
[2] M. Lee, F. Leu, Y. Chen, Pareto-based cache replacement for YouTube, World

Wide Web 18 (6) (2015) 1523–1540, http://dx.doi.org/10.1007/s11280-014-
0318-9.

[3] D. Mátáni, K. Shah, A. Mitra, An O(1) algorithm for implementing the LFU cache
eviction scheme, CoRR abs/2110.11602, 2021, arXiv:2110.11602.

[4] G. Vietri, L.V. Rodriguez, W.A. Martinez, S. Lyons, J. Liu, R. Rangaswami, M.
Zhao, G. Narasimhan, Driving cache replacement with ML-based lecar, in: A.
Goel, N. Talagala (Eds.), 10th USENIX Workshop on Hot Topics in Storage
and File Systems, HotStorage 2018, Boston, MA, USA, July 9-10, 2018, USENIX
Association, 2018.

[5] Z. Song, D.S. Berger, K. Li, W. Lloyd, Learning relaxed belady for content
distribution network caching, in: R. Bhagwan, G. Porter (Eds.), 17th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2020,
Santa Clara, CA, USA, February 25-27, 2020, USENIX Association, 2020, pp.
529–544.

[6] G. Yan, J. Li, RL-Bélády: A unified learning framework for content caching, in:
C.W. Chen, R. Cucchiara, X. Hua, G. Qi, E. Ricci, Z. Zhang, R. Zimmermann
(Eds.), MM ’20: The 28th ACM International Conference on Multimedia, Virtual
Event / Seattle, WA, USA, October 12-16, 2020, ACM, 2020, pp. 1009–1017,
http://dx.doi.org/10.1145/3394171.3413524.

[7] N. Atre, J. Sherry, W. Wang, D.S. Berger, Caching with delayed hits, in: H.
Schulzrinne, V. Misra (Eds.), SIGCOMM ’20: Proceedings of the 2020 Annual
Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, Virtual Event, USA, August 10-14, 2020, ACM, 2020, pp. 495–513,
http://dx.doi.org/10.1145/3387514.3405883.

[8] C. Zhang, H. Tan, G. Li, Z. Han, S.H. Jiang, X. Li, Online file caching in
latency-sensitive systems with delayed hits and bypassing, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, London, United King-
dom, May 2-5, 2022, IEEE, 2022, pp. 1059–1068, http://dx.doi.org/10.1109/
INFOCOM48880.2022.9796969.

[9] R. Krishnan, H.V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T.E.
Anderson, J. Gao, Moving beyond end-to-end path information to optimize
CDN performance, in: A. Feldmann, L. Mathy (Eds.), Proceedings of the 9th
ACM SIGCOMM Internet Measurement Conference, IMC 2009, Chicago, Illinois,
USA, November 4-6, 2009, ACM, 2009, pp. 190–201, http://dx.doi.org/10.1145/
1644893.1644917.

[10] X. Fan, E. Katz-Bassett, J.S. Heidemann, Assessing affinity between users and
CDN sites, in: M. Steiner, P. Barlet-Ros, O. Bonaventure (Eds.), Traffic Monitoring
and Analysis - 7th International Workshop, TMA 2015, Barcelona, Spain, April
21-24, 2015. Proceedings, in: Lecture Notes in Computer Science, vol. 9053,
Springer, 2015, pp. 95–110, http://dx.doi.org/10.1007/978-3-319-17172-2_7.

[11] C. Zhang, H. Tan, G. Li, Z. Han, S.H. Jiang, X. Li, Online file caching in
latency-sensitive systems with delayed hits and bypassing, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, London, United King-
dom, May 2-5, 2022, IEEE, 2022, pp. 1059–1068, http://dx.doi.org/10.1109/
INFOCOM48880.2022.9796969.

[12] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, M. Paleczny, Workload analysis of
a large-scale key-value store, in: P.G. Harrison, M.F. Arlitt, G. Casale (Eds.), ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, London, United Kingdom,
June 11-15, 2012, ACM, 2012, pp. 53–64, http://dx.doi.org/10.1145/2254756.
2254766.

[13] B.M. Maggs, R.K. Sitaraman, Algorithmic nuggets in content delivery, Com-
put. Commun. Rev. 45 (3) (2015) 52–66, http://dx.doi.org/10.1145/2805789.
2805800.

[14] G. Einziger, R. Friedman, B. Manes, Tinylfu: A highly efficient cache admission
policy, ACM Trans. Storage 13 (4) (2017) 35:1–31, http://dx.doi.org/10.1145/
3149371.

[15] D.S. Berger, R.K. Sitaraman, M. Harchol-Balter, AdaptSize: Orchestrating the
hot object memory cache in a content delivery network, in: A. Akella, J.
Howell (Eds.), 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, USENIX
Association, 2017, pp. 483–498.

https://wearesocial.cn/
http://dx.doi.org/10.1007/s11280-014-0318-9
http://dx.doi.org/10.1007/s11280-014-0318-9
http://dx.doi.org/10.1007/s11280-014-0318-9
http://arxiv.org/abs/2110.11602
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb5
http://dx.doi.org/10.1145/3394171.3413524
http://dx.doi.org/10.1145/3387514.3405883
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1145/1644893.1644917
http://dx.doi.org/10.1145/1644893.1644917
http://dx.doi.org/10.1145/1644893.1644917
http://dx.doi.org/10.1007/978-3-319-17172-2_7
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796969
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2805789.2805800
http://dx.doi.org/10.1145/2805789.2805800
http://dx.doi.org/10.1145/2805789.2805800
http://dx.doi.org/10.1145/3149371
http://dx.doi.org/10.1145/3149371
http://dx.doi.org/10.1145/3149371
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb15

Computer Networks 230 (2023) 109794P. Li et al.
[16] Y. Guan, X. Zhang, Z. Guo, CACA: Learning-based content-aware cache admission
for video content in edge caching, in: L. Amsaleg, B. Huet, M.A. Larson, G.
Gravier, H. Hung, C. Ngo, W.T. Ooi (Eds.), Proceedings of the 27th ACM
International Conference on Multimedia, MM 2019, Nice, France, October 21-25,
2019, ACM, 2019, pp. 456–464, http://dx.doi.org/10.1145/3343031.3350890.

[17] V. Kirilin, A. Sundarrajan, S. Gorinsky, R.K. Sitaraman, RL-cache: Learning-based
cache admission for content delivery, IEEE J. Sel. Areas Commun. 38 (10) (2020)
2372–2385, http://dx.doi.org/10.1109/JSAC.2020.3000415.

[18] N. Beckmann, H. Chen, A. Cidon, LHD: Improving cache hit rate by maximizing
hit density, in: 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 18, USENIX Association, Renton, WA, 2018, pp. 389–403.

[19] S. Li, J. Xu, M. van der Schaar, W. Li, Popularity-driven content caching,
in: 35th Annual IEEE International Conference on Computer Communications,
INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, IEEE, 2016, pp.
1–9, http://dx.doi.org/10.1109/INFOCOM.2016.7524381.

[20] Akamai, 2022. https://www.akamai.com/.
[21] C. Chan, S. Hu, P. Wang, Y. Chen, A FIFO-based buffer management approach

for the ATM GFR services, IEEE Commun. Lett. 4 (6) (2000) 205–207, http:
//dx.doi.org/10.1109/4234.848414.

[22] N. Blefari-Melazzi, G. Bianchi, A. Caponi, A. Detti, A general, tractable and
accurate model for a cascade of LRU caches, IEEE Commun. Lett. 18 (5) (2014)
877–880, http://dx.doi.org/10.1109/LCOMM.2014.031414.132727.

[23] D. Lee, J. Choi, J. Kim, S.H. Noh, S.L. Min, Y. Cho, C. Kim, On the existence
of a spectrum of policies that subsumes the least recently used (LRU) and least
frequently used (LFU) policies, in: Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
Atlanta, Georgia, USA, May 1-4, 1999, ACM, 1999, pp. 134–143.

[24] Z. Sun, M.R. Nakhai, Distributed learning-based cache replacement in collab-
orative edge networks, IEEE Commun. Lett. 25 (8) (2021) 2669–2672, http:
//dx.doi.org/10.1109/LCOMM.2021.3081823.

[25] R.A. Dziyauddin, D. Niyato, N.C. Luong, A.A.A.M. Atan, M.A.M. Izhar, M.H.
Azmi, S.M. Daud, Computation offloading and content caching and delivery in
vehicular edge network: A survey, Comput. Netw. 197 (2021) 108228, http:
//dx.doi.org/10.1016/j.comnet.2021.108228.

[26] Y. Zhang, P. Li, Z. Zhang, B. Bai, G. Zhang, W. Wang, B. Lian, Challenges and
chances for the emerging short video network, in: IEEE International Conference
on Computer Communications, Infocom, IEEE, 2019.

[27] T. Zong, C. Li, Y. Lei, G. Li, H. Cao, Y. Liu, Cocktail edge caching: Ride
dynamic trends of content popularity with ensemble learning, in: IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10, http:
//dx.doi.org/10.1109/INFOCOM42981.2021.9488910.

[28] T. Li, T. Braud, Y. Li, P. Hui, Lifecycle-aware online video caching, IEEE Trans.
Mob. Comput. 20 (8) (2021) 2624–2636, http://dx.doi.org/10.1109/TMC.2020.
2984364.

[29] X. He, K. Wang, H. Lu, W. Xu, S. Guo, Edge QoE: Intelligent big data caching
via deep reinforcement learning, IEEE Netw. 34 (4) (2020) 8–13, http://dx.doi.
org/10.1109/MNET.011.1900393.

[30] Y. Zhang, P. Li, Z. Zhang, B. Bai, G. Zhang, W. Wang, B. Lian, K. Xu, AutoSight:
Distributed edge caching in short video network, IEEE Netw. 34 (3) (2020)
194–199, http://dx.doi.org/10.1109/MNET.001.1900345.

[31] S. Liu, C. Zheng, Y. Huang, T.Q.S. Quek, Distributed reinforcement learning for
privacy-preserving dynamic edge caching, IEEE J. Sel. Areas Commun. 40 (3)
(2022) 749–760, http://dx.doi.org/10.1109/JSAC.2022.3142348.

[32] P. Li, Y. Zhang, H. Zhang, W. Wang, K. Xu, Z. Zhang, CRATES: A cache
replacement algorithm for low access frequency period in edge server, in:
17th International Conference on Mobility, Sensing and Networking, MSN 2021,
Exeter, United Kingdom, December 13-15, 2021, IEEE, 2021, pp. 128–135,
http://dx.doi.org/10.1109/MSN53354.2021.00033.

[33] T. Xie, T. He, P.D. McDaniel, N. Nambiar, Attack resilience of cache replacement
policies, in: 40th IEEE Conference on Computer Communications, INFOCOM
2021, Vancouver, BC, Canada, May 10-13, 2021, IEEE, 2021, pp. 1–10, http:
//dx.doi.org/10.1109/INFOCOM42981.2021.9488697.

[34] J. Gao, S. Zhang, L. Zhao, X. Shen, The design of dynamic probabilistic caching
with time-varying content popularity, IEEE Trans. Mob. Comput. 20 (4) (2021)
1672–1684, http://dx.doi.org/10.1109/TMC.2020.2967038.

[35] L. Qiu, G. Cao, Popularity-aware caching increases the capacity of wireless
networks, IEEE Trans. Mob. Comput. 19 (1) (2020) 173–187, http://dx.doi.org/
10.1109/TMC.2019.2892419.

[36] J. Yao, T. Han, N. Ansari, On mobile edge caching, IEEE Commun. Surv. Tutor.
21 (3) (2019) 2525–2553, http://dx.doi.org/10.1109/COMST.2019.2908280.

[37] M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro, Diversity-improved caching of
popular transient contents in vehicular named data networking, Comput. Netw.
184 (2021) 107625, http://dx.doi.org/10.1016/j.comnet.2020.107625.

[38] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H.C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, V. Venkataramani, Scaling
memcache at facebook, in: N. Feamster, J.C. Mogul (Eds.), Proceedings of the
10th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2013, Lombard, IL, USA, April 2-5, 2013, USENIX Association, 2013, pp.
385–398.
12
[39] Y. Zhang, P. Huang, K. Zhou, H. Wang, J. Hu, Y. Ji, B. Cheng, OSCA: An online-
model based cache allocation scheme in cloud block storage systems, in: USENIX
Annual Technical Conference, 2020.

[40] K. Zhou, S. Sun, H. Wang, P. Huang, X. He, R. Lan, W. Li, W. Liu, T. Yang,
Demystifying cache policies for photo stores at scale: A tencent case study, in:
Proceedings of the 32nd International Conference on Supercomputing, ICS 2018,
Beijing, China, June 12-15, 2018, ACM, 2018, pp. 284–294, http://dx.doi.org/
10.1145/3205289.3205299.

Pengmiao Li is currently a Ph.D. candidate in State Key
Laboratory of Networking and Switching Technology from
Beijing University of Posts and Telecommunications, Beijing,
China. Her current research interests include edge caching,
CDN and edge computing.

Yuchao Zhang received her Ph.D. degree from Computer
Science Department at Tsinghua University in 2017. Before
that, she received the B.S. degree in computer science and
technology from Jilin University in 2012. Her research
interests include large scale datacenter networks, content
delivery networks, data-driven networks and edge comput-
ing. She is currently with the Beijing University of Posts and
Telecommunications as an associate professor.

Huahai Zhang is currently a mphil student from Beijing
University of Posts and Telecommunications, Beijing, China.
His current research interests include edge caching, data
systems, and data-driven networks.

Wendong Wang (M’05) received his B.E. and M.E. degrees
both from the Beijing University of Posts and Telecommu-
nications, China, in 1985 and 1991, respectively, where he
is currently a Full Professor in State Key Laboratory of
Networking and Switching Technology. He has published
over 200 of papers in various journals and conference
proceedings. His current research interests are the next
generation net-work architecture, network resources man-
agement and QoS, and mobile Internet. He is a member of
IEEE.

Ke Xu [M’02, SM’09] received his Ph.D. from the Depart-
ment of Computer Science and Technology at Tsinghua
University, where he serves as a full professor. He serves
as an associate editor for IEEE Internet of Things Journal
and has guest edited several special issues in IEEE and
Springer Journals. His research interests include next gen-
eration Internet, P2P systems, Internet of Things, network
virtualization, and network economics. He is a member of
ACM.

Zhili Zhang graduated with B.S. in Computer Science with
highest distinction from Nanjing University, Nanjing, China.
Then received his M.S. and Ph.D. degrees in computer
science from the University of Massachusetts, Amherst in
1992 and 1997. He joined the Department of Computer
Science and Engineering at University of Minnesota in
January 1997, where he is now a Full Professor. Zhi-Li is a
Fellow of IEEE.

http://dx.doi.org/10.1145/3343031.3350890
http://dx.doi.org/10.1109/JSAC.2020.3000415
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb18
http://dx.doi.org/10.1109/INFOCOM.2016.7524381
https://www.akamai.com/
http://dx.doi.org/10.1109/4234.848414
http://dx.doi.org/10.1109/4234.848414
http://dx.doi.org/10.1109/4234.848414
http://dx.doi.org/10.1109/LCOMM.2014.031414.132727
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb23
http://dx.doi.org/10.1109/LCOMM.2021.3081823
http://dx.doi.org/10.1109/LCOMM.2021.3081823
http://dx.doi.org/10.1109/LCOMM.2021.3081823
http://dx.doi.org/10.1016/j.comnet.2021.108228
http://dx.doi.org/10.1016/j.comnet.2021.108228
http://dx.doi.org/10.1016/j.comnet.2021.108228
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb26
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910
http://dx.doi.org/10.1109/TMC.2020.2984364
http://dx.doi.org/10.1109/TMC.2020.2984364
http://dx.doi.org/10.1109/TMC.2020.2984364
http://dx.doi.org/10.1109/MNET.011.1900393
http://dx.doi.org/10.1109/MNET.011.1900393
http://dx.doi.org/10.1109/MNET.011.1900393
http://dx.doi.org/10.1109/MNET.001.1900345
http://dx.doi.org/10.1109/JSAC.2022.3142348
http://dx.doi.org/10.1109/MSN53354.2021.00033
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488697
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488697
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488697
http://dx.doi.org/10.1109/TMC.2020.2967038
http://dx.doi.org/10.1109/TMC.2019.2892419
http://dx.doi.org/10.1109/TMC.2019.2892419
http://dx.doi.org/10.1109/TMC.2019.2892419
http://dx.doi.org/10.1109/COMST.2019.2908280
http://dx.doi.org/10.1016/j.comnet.2020.107625
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb38
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb39
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb39
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb39
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb39
http://refhub.elsevier.com/S1389-1286(23)00239-6/sb39
http://dx.doi.org/10.1145/3205289.3205299
http://dx.doi.org/10.1145/3205289.3205299
http://dx.doi.org/10.1145/3205289.3205299

	A delayed eviction caching replacement strategy with unified standard for edge servers
	Introduction
	Related Work
	Admission Policy
	Eviction Policy
	Eviction and Admission

	Background and Motivation
	Background
	Motivation
	Fetching-Gap
	Standard-Conflict

	Performance Metric

	Design
	Delayed-Eviction
	Unified-Standard
	Framework
	Eviction candidates set
	State, action and Reward
	A3C network

	Evaluation
	Experiment setting
	Simulation Environment
	Base Algorithms
	Dataset

	Modules Performance
	Delayed-Eviction
	Unified-Standard

	Overall Performance

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

