
MO-FreeVM: multi-objective server release algorithm for cluster
resource management

Shiyan Zhang1 • Yuchao Zhang1 • Ran Wang1 • Xiangyang Gong1

Received: 22 December 2021 / Revised: 11 May 2022 / Accepted: 14 June 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the rise of 5G/6G and cloud computing, cluster management has become increasingly popular. Elastic cluster

resources allow cloud clients to dynamically scale their resource requirements over time. Existing researches of cluster

schedulers focus on improving resource scheduling speed, increasing cluster utilization, compacting the number of active

physical machines (PMs) and time satisfaction function (TSF) within a cluster. The TSF is applied as a time to measure the

parallel-VM scheduling problem. However, completing execution time (makespan) of task requests is often neglected,

which results in inaccurate scheduling and unreasonable total cost computation. The total cost involves PM cost, migrate

cost, and balance cost. To solve the problem of inaccurate scheduling of task requests and total cost billing in cluster

management, in this paper, we propose an innovative heuristic algorithm, namely, multi-objective two-stage variable

neighborhood searching (MO_STVNS), which aims at minimizing total cost while also considering TSF for active PMs.

Moreover, we design a Multi-Objective FreeVM (MO-FreeVM) scheduler based on resource prediction, which incorpo-

rates a variety of algorithms to work in collaboration to provide near-optimal resource management for cluster. We

evaluate MO_STVNS in different real traces and measure it through extensive experiments. The experimental results show

that compared with state-of-art methods, the average total cost and average TSF of MO_STVNS are reduced by 33.75%

and 60.67% respectively.

Keywords Cluster management � Cloud � Multi-objective � Virtual machine � Scheduling

1 Introduction

With the rapid development of virtualization technologies

[1], Internet of Things (IoT) [2] and artificial intelligence-

driven applications [3], massive amounts of data are

expected to be transferred among data centers (DCs).

Cluster management is crucial in cloud computing, since it

usually needs to tackle a complex multi-objective opti-

mization problem that requires considering not only cluster

load balancing, cluster utilization, and energy consumption

from the machine perspective, but also the execution time

of task requests from the user perspective.

Cluster management solutions may involve many con-

flicting and interactive objectives, which makes the rele-

vant optimization problems nontrivial. Recently, latest

related works aiming at improving cluster performance are

conducted from different perspectives. Researchers need to

obtain optimal values for these objectives simultaneously.

For example, an Online VM Prediction based Multi-ob-

jective Load Balancing (OP-MLB) [4] employs a proactive

approach to place and migrate virtual machines. The goal

of this framework is to efficiently utilize oversubscribed

cloud environments to reduce power consumption and

improve resource utilization while minimizing the risk of

Service Level Agreement (SLA) violations. Guerrero et al.

& Yuchao Zhang

yczhang@bupt.edu.cn

Shiyan Zhang

zshiyan@bupt.edu.cn

Ran Wang

wangranse@bupt.edu.cn

Xiangyang Gong

xygong@bupt.edu.cn

1 The State Key Laboratory of Networking and Switching

Technology, Beijing University of Posts and

Telecommunications, No.10 Xitucheng Road, Haidian

District, Beijing 100089, China

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03663-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2224-8555
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03663-7&domain=pdf
https://doi.org/10.1007/s10586-022-03663-7

[5] propose a genetic algorithm approach for optimizing

container allocation and resilience management using the

Non-dominated Sorting Genetic Algorithm-II (NSGA-II),

which is based on the optimization of four objectives,

namely, balanced cluster usage, a tight distribution of

microservices workload along their container replicas,

reduction of network cost, and reliability. Multiopt [6] is

proposed to solve the performance optimization problem of

Docker container resource scheduling, which considers five

key factors: CPU and memory usage of every server, the

time consumption of image transmission on the network,

association between containers and severs, the clustering of

containers. The current state-of-the-art works [5, 7–11]

have attempted to optimize tasks assignment within the

static clusters from various perspectives. In this paper, we

study the dynamic cluster management problem, where the

cluster size and composition must be adjusted as needed,

and also considering the performance related to task

requests. Thus, it leads to the above works cannot directly

solve our problem.

In addition, there are also outstanding recent works

concentrating on upgrading the performance of task

requests. Such as, an efficient heuristic algorithm named

Cost and Makespan Scheduling of Workflows in the Cloud

(CMSWC) [12] is proposed to solve the workflow

scheduling problem, which minimizes execution cost and

makespan of workflows simultaneously. Zhou et al. [13]

study the workflow scheduling problem of minimizing total

monetary cost of executing all tasks and makespan. A

fuzzy dominance sort based heterogeneous earliest-finish-

time (FDHEFT) algorithm is designed for the workflow

scheduling problem in cloud environment. The literature

[14–17] have investigated the trade-off between quality of

service (QoS) of user requirements and workflow execution

costs. However, the existing multi-objective optimization

algorithms either consider the goals regarding the utiliza-

tion, balance, and energy consumption of the cluster from

the point of view of machines, or only consider the cost and

makespan of tasks execution from the point of view of

users. Little literatures focus on improving the execution

time of task requests and at the same time maintaining the

high performance of machines.

In order to simultaneously improve both cluster perfor-

mance and users satisfaction, researchers have to meet the

following new challenges. Firstly, certain task requests can

only run on specific hardware, which increases the inter-

dependence between task requests and machines in a multi-

resource heterogeneous cluster [18, 19]. Secondly, it is

automatical for the cluster manager to strive the goal of

decreasing monetary cost and execution makespan, in order

to obtain more profits and ensure QoS. The cost-aware

related challenges of task scheduling in cloud computing

are categorized based on QoS performance (e.g., makespan

and delay), system functionality and system architecture

[20]. Thirdly, existing global search metaheuristics are

effective in solving task scheduling optimization problems,

however they often lead to local optimality and introduce

larger time and space complexities.

To address the above challenges, a Multi-Objective

FreeVM (MO-FreeVM) framework is proposed, which

tackles resources prediction problem for each scheduling

cycle while accounting for both servers state performance

and users QoS. We deploy MO-FreeVM on both Google

Cluster Data (GCD) and Alibaba Traces (AT). Then, a

large number of experiments are conducted to evaluate the

performance of the proposed MO_STVNS algorithm. The

algorithm can effectively reduce the total cost and time

satisfaction function (TSF) while ensuring QoS (e.g.,

capacity and delay). Besides, it maximizes the balance

achieved between trade-offs in reducing energy consump-

tion and minimizing waste of resources.

In summary, the key contributions of this paper are as

follows:

• We disclose a new problem (i.e., Concurrently consid-

ering servers state and users QoS in cluster management

issues). Specifically, we design a resource prediction

based MO-FreeVM scheduler that integrates multiple

algorithms working in concert to provide efficient

resource management for clusters.

• We propose a multi-objective variable neighborhood

search (VNS [21]) algorithm that minimizes total cost

and TSF by using a specific neighborhood structure.

The algorithm is a metaheuristic method for solving

multi-objective combinatorial optimization problems. It

explores the neighborhood of the current solution and

then moves to a new solution if and only if the

improvement is made. The placement and redistribution

of task requests within the cluster is accomplished by

designing the MO_STVNS.

• To evaluate the performance of the proposed

MO_STVNS algorithm, we compare two different

scenarios, i.e., heterogeneous cluster Scenario (GCD)

and homogeneous cluster Scenario (AT), also imple-

ment another three state-of-the-art algorithms. The

experimental results show that the average total cost

and average TSF of MO_STVNS are reduced by

33.75% and 60.67% respectively, compared with

state-of-art methods.

The rest of this paper is structured as follows. Section 2

presents a brief overview of related works. Definitions of

scheduling models and problem formulation are given in

Sect. 3. The proposed MO-FreeVM is presented in Sect. 4.

Section 5 compares our algorithm with stateof-the-art

algorithms by extensive evaluations. At last, Sect. 6 con-

cludes the paper.

Cluster Computing

123

2 Related work

The issue of deploying task requests on homogeneous or

heterogeneous clusters explored in this article covers the

following research topics.

2.1 Single objective optimization

A simple single-objective optimization problem which can

be expressed as minimize F(x), where x 2 Y, where Y is

the set of constraints. In the environment of heterogeneous

virtualized server clusters, an application placement Con-

troller pMapper [22], which achieves the objective of

power minimization under the performance constraint of

merging power supplies using virtualization mechanisms.

Ferdaus etal. [23] present an ACO metaheuristic-based

server consolidation mechanism to solve the problem of

minimizing power consumption and resource waste in

large virtualized data centers. AlloX [24] and Gandivafair

[25], optimize for a single scheduling goal and tightly

couple their scheduling mechanisms to that goal (e.g.,

maxmin fairness). However, they cannot be used easily to

support more complicated policies.

2.2 VM placement and migration

The process of mapping the VMs to the PMs is called the

VMP problem and is known to be NP-hard. Different

metaheuristic algorithms are proposed to optimize the

placement of virtual machines in cloud computing. A series

of intelligent optimization algorithms such as genetic

algorithms (GA) [26], simulated annealing (SA) [27] and

grey wolf optimization (GWO) [28] are used for energy

efficient VM placement. To achieve a balance between the

communication overhead and overall throughput, [29]

proposes a solution called FreeContainer, which uses a new

two-phase algorithm to redistribute containers among

hosts. Furthermore, FreeContainer does not require hard-

ware modifications and has been extensively evaluated in

real environment. Lv, Liang et al. [30] design an efficient

communication-aware worst fit decreasing algorithm to

place a set of new containers into data centers, and further

explored the conflict between container communication

and resource utilization in a data center. The migration of

containers has also been extensively studied. A joint

computing, data transmission and migration energy cost

(JCDME) model is proposed in [31], where the overall

energy efficiency is improved by optimizing the virtual

elements (VE) allocation in a way that introduces weight-

ing parameters. [32] proposes solutions for live migrating

Linux containers, while Pickartz et al. [33] propose the

techniques for live migrating Docker containers.

Nevertheless, the current VMP works are only handled

separately as a dynamic VM placement problem, the

practical cluster environment also needs to be combined

with task scheduling in order to provide an effective

solution for cloud subscribers and providers.

2.3 Optimizing costs and makespan

Cloud computing is an emerging pay-per-use business

computing model, and with the rapid growth of cloud

computing, a large number of applications have migrated

from clusters and physical machines (PMs) to IaaS clouds

[34]. The cloud possesses an unlimited number of resour-

ces, and consumers can expand or scale down the rented

resources according to the requirements of applications

[35]. Makespan and cost are two key performance mea-

surement criteria assigned by cloud users and considered

by cluster scheduler. Makespan is the time from the

beginning till the completion of the sequence of tasks in a

workflow. [36] presents a workflow scheduling strategy

that combined minimal cost and minimal makespan. Su

et al. [37] treat the optimization problem of task scheduling

with multiple virtual machines and different pricing models

as a convex combination of minimizing makespan and

monetary costs, and designed two heuristic algorithms to

better match the pricing models and the opaque nature of

the cloud. A weightbased energy consumption constraint

mechanism is proposed in [38] for heterogeneous com-

puting systems and minimizes makespan by assigning task

to the processor that allowed the earliest finish time. While

these worked jointly optimize makespan and cost, they

ignored simultaneous optimization under multiple QoS

constraints.

2.4 Cluster management

Modern organizations operate large clusters that are typi-

cally shared among several users and applications. Most of

these most advanced cluster managers are already mature

with advanced features, such as Borg [39], Kubernetes

[40], Medea [41] and YARN [42] allocate resources to

applications on demand. Cluster scaling involves intelli-

gent algorithms related to task scheduling and migration,

such as grey wolf optimization (GWO) [43], genetic

algorithms (GA) [44] and simulated annealing (SA)

[45, 46]. However, these intelligent algorithms introduce

larger iteration delays. In order to elasticize computing

resources and support heterogeneous resource management

strategies to respond to the dynamic business volumes of

various types of workloads. Medea [41] achieves the goal

of global optimization by introducing a two-scheduler

design and placement constraints. HTAS [47] makes task

scheduling and scaling decisions in a cost-effective

Cluster Computing

123

manner, preventing resource waste and over-provisioning.

Hydra [48] leverages a federated architecture, while cen-

trally coordinating to ensure that tenants receive the correct

share of resources. However, existing cluster management

solutions, often ignore the dynamically changing cluster

environment where any type of task packaging or task

collaboration can change cost efficiency and overall system

performance.

We have also investigated the latest works on dynamic

multi-objective cluster management. Liu et al. [49] con-

sider four optimization objectives for virtual clusters and

data centers, namely availability, energy consumption,

average resource utilization and resource load balancing,

and propose an evolutionary algorithm to weigh these four

optimization objectives. Li et al. [50] present a dynamic

multi-objective optimized replica placement and migration

strategy for edge cloud-based SaaS applications. Ji et al.

[51] have designed an adaptive ranking multi-objective

differential evolutionary algorithm to solve dynamic multi-

objective non-linear equations and find optimal solutions.

Under time-based server maintenance in cloud data centers,

Patel et al. [52] propose an online truthful double auction

technique for balancing multi-objective trade-offs between

energy, revenue and performance in IaaS clouds. Devi

et al. [53] have used a genetic algorithm based on coded

chromosomes (GEC-DRP) to manage dynamic resource

scheduling. However, the above works have only studied a

part of the problems in dynamic cluster management.

There are no comprehensive analyses in terms of con-

straints, algorithm complexity, and prediction of PM start-

stop in dynamic clusters.

The MO-FreeVM framework is a pragmatic and chal-

lenging solution compared to existing works. MO-FreeVM

develops and integrates all required operations into a uni-

fied platform, allowing them to interact and optimize each

other to improve the overall performance of the cloud data

centers.

3 Problem formalization

Existing studies of task scheduling and virtual machine

placement in cluster management often lack comprehen-

sive optimization regarding the performance of clustered

PMs and the makespan of task requests. In this paper, we

consider the energy consumption associated with VM

placement/migration while considering makespan for tasks

scheduling. Therefore, we view this study as a multi-ob-

jective optimization problem with the objective of mini-

mizing total cost and time satisfaction function for active

PMs.

3.1 Problem definition

In this subsection we describe the task model and the cloud

resource management model. In addition, a detailed

description of all indices, input parameters and decision

variables are listed in Table 1.

3.1.1 Task model

The two types of workflows involved in the data center are

Long-running services and batch jobs. A workflow can be

described by the task instance model and each task is

configured to a single virtual machine. A task is equivalent

to a VM request, and each task needs to be placed on an

appropriate PM. Assuming that arbitrary N task requests

arrive per scheduling cycle, the set of task requests is

defined as TR ¼ TR1;TR2; :::; TRi; :::; TRNf g, where i 2
½1;N� and N is the total number of task requests. Each task

request TRi is described as TRi ¼ szi; dli; stih i, where szi, dli
and sti represent the size of task request that is measured by

million of instructions (MI), task request deadline and start

time of task request, respectively.

3.1.2 Cloud resource manage model

Our cloud data center platform consists of heterogeneous

virtual machines (VMs) and PMs, which are similar to

Amazon Elastic Compute Cloud (EC2) for scheduling dif-

ferent types of workflows. Moreover, VMs are configured

with different resource parameters, and they can be placed in

different PMs . Each VM is characterized by its own CPU

and memory configuration. Assuming that each task Tj is

configured to a VM, the processing time of the task Tj
assigned to a particular VM is negligible. Set of VMs is

defined as VM ¼ VM1;VM2; . . .;VMv; . . .;VMNf g, where
v�½1;N� and N is the total number of VMs. Set of PMs is

defined as PM ¼ PM1;PM2; . . .;PMk; . . .;PMMf g, where
k�½1;M� and M is the total number of PMs. The problem of

resource management in cloud platforms is the process of

placing different types of VMs into the appropriate PMs. On

the basis of the problem description, we introduce the MO-

FreeVM problem in detail.

3.2 Total cost

Previously related work, cost usually refers to the total cost

that a user needs to pay to the cloud provider to rent a

virtual machine. Nevertheless, a range of costs such as the

cost of booting the machines in the cluster and VM

migration cost are often ignored. Hence, in this paper, we

have quantified the total cost of VM allocation in terms of

Cluster Computing

123

two components, which are PM cost and QoS cost. Among

them, QoS cost includes migrate cost and balance cost.

3.2.1 PM cost

When a batch requests arrive, all PMs have Active/Inactive

status. A PM in On state consumes power, here, we convert

time to billing. When the PM is On, it charges Con per

minute; PM in Off state is not billed. The PM cost is then

expressed as:

Pcost ¼ Con � jPonðtÞj ð1Þ

3.2.2 Migrate cost

Real-time migration of virtual machines makes it possible

to transfer a VM from the source node to the destination

node with minimal downtime and hang-up time. Although

dynamic migration is transparent to end users, it may result

in resource-related performance degradation of applica-

tions running in the VM. If two CPU-hungry VMs are

placed on the same PM, the resource utilization on the PM

may be unbalanced, e.g., there is very little CPU left, but a

lot of memory left. If the new VM is not placed on this PM

with unbalanced resources, it cannot degrade the perfor-

mance of any entity. To quantify migration costs, we have:

Mcost ¼ CM �
X

r2R

X

v2V
Dr

vðtÞ � f vð Þ

f vð Þ ¼
1; P vð Þ 6¼ P

0
vð Þ

0; P vð Þ ¼ P
0
vð Þ

(ð2Þ

Dr
v tð Þ indicates the migration time of resource r within

resource request v. f vð Þ is used to determine whether

resource request v is still on the same PM after migration.

CM denotes the migration overhead per unit of time. P vð Þ
denotes the PM assigned to resource request v. P0 vð Þ
denotes the PM reassigned for resource request v.

3.2.3 Balance cost

If the PM has no available resources for future VM allo-

cations or upcoming requests, so the residual amount of

multiple resources should be balanced. Balance Ratio [54]

represents the target ratio of resource ri and resource rj. In

addition, the Balance Ratio dynamically varies per cycle.

Table 1 Summary of

parameters and their

descriptions

Variable Definition

M Number of PMs in the datacenter

N Number of task requests

PonðtÞ The duration of the enabled PM

Dr
vðtÞ The migration time of resource r within resource request v

P vð Þ PM allocated for resource request v

P
0
vð Þ PM reallocated for resource request v

f(v) Binary parameter: 1 if resource request v is still on the same PM after migration, 0 otherwise

Tmake the time of the maximum active PMs

Tave the average time of all active PMs.

a the weight parameter of Tmake

b the weight parameter of Tave

tcomj the completing execution time of PM j

szi the size of task instance i

Cpow
ij when task i is placed to PM j, the computing power of PM j

Ecom
ij the expected time for PM j to process VM i

zi The PM to execute the ith virtual machine

i, k Task requests indices; i,k = 1,2, . . ., N when i or k=0, 0 represents the dummy node

Yijk Binary parameter: 1 if VM i immediately produces before VM k in PM j, 0 otherwise

dij Binary parameter: 1 if task request i is assigned to PM j, 0 otherwise

A Unit time cost of processing with PMs

Cluster Computing

123

Bcost ¼
X

ri;rjð Þ;8ri 6¼rj

cost ri; rj
� �

costðri; rjÞ ¼
X

p2PM

jpðriÞ þ vmri � ðpðrjÞ þ vmrjÞ�

Balance Rationj � jpðrjÞ � pðrjÞ � Balance Rationj

Balance Ratio ¼ t ri; rj
� �

ð3Þ

PM denotes the set of PMs, p denotes any machine within

PM, p(ri) denotes the target ratio of resource ri on PM p,

and vmri denotes the size of resource ri on VM. Similarly,

p(rj) denotes the target ratio of resource rj on PM p, and

vmrj denotes the size of resource rj on VM.

According to the above definitions, the objective func-

tion to be minimized can be defined as the weighted sum of

all the costs, i.e.,

Cost ¼ wP � Pcost þ wM �Mcost þ wB � Bcost ð4Þ

Generally speaking, the proportion of different costs are

adjusted to the actual requirements and the optimal VM

scheduling is chosen by setting different weight coeffi-

cients (e.g. wP, wM and wB), while ensuring that the total

cost is minimum.

3.3 Time satisfaction function

We define time satisfaction function (TSF) as the time used

to measure the parallel-VM scheduling problem, consisting

of Tmake and Tave two components, where Tmake refers to the

maximum makespan of all active PMs and Tave refers to the

average makespan of all active PMs. Since these two

parameters can be measured in the same units (time units),

we have:

TSFij ¼ aTmake þ bTave ð5Þ

a indicates the weight parameter of Tmake and b indicates

the weight parameter of Tave. In the following, Eq. (5) is

introduced in Eq. (11).

The maximum sum of Ecom
ij of all active PMs , we have:

Tmake ¼ max
X

ijzi¼j½ �
Ecom
ij

8
<

:

9
=

; ð6Þ

Ecom
ij denotes the expected time for PM j to process VM i.

i j zi ¼ j½ � represents the VMs assigned to PM j.

As Tave has higher order of magnitude over Tmake, it is

normalized by M, we have:

Tave ¼
PM

j¼1 t
com
j

M
ð7Þ

The expected execution time Ecom
ij for all VM i assigned to

PM j are calculated as follows:

Ecom
ij ¼

X

i2N

szi
Cpow
ij

ð8Þ

szi denotes the size of the task i, measured in Million

Instruction (MI); the computing power of PM j is defined

as Cpow
ij , computing power is equal to the processing rate of

task i by PM j, measured in million instruction per second

(MIPS).

Based on the above analysis, calculating the makespan

of all submitted task requests, we have:

tcomj ¼
X

ijzi¼j½ �
Ecom
ij ð9Þ

z ¼ z1; z2; . . .; zNf g; 8zi 2 ½1;M�; 8i 2 ½1;N�; 8j 2 ½1;M�
ð10Þ

tcomj indicates the completing execution time of PM j.

3.4 Multi-objective model

Dynamic cluster management involves a variety of con-

flicting objectives that should be optimized simultaneously.

Based on the above definitions and models, dynamic

cluster management can be represented as a multi-objective

optimization problem with multiple decision variables and

objectives. We aim to minimize the total cost Equation (4)

as well as the time satisfaction function (Eq. 5) of active

PMs as our optimization objectives, have the following

formal definitions:

Minimize : Z ¼
XM

j¼1

XN

i¼1

Costijdij þ
XM

j¼1

XN

i¼1

A� TSFij

ð11Þ

Subject to:

XN

i¼1

Y0ij � 1; 8j ð12Þ

XM

j¼1

XN

i¼1;i 6¼k

Yijk ¼ 1; 8k ð13Þ

XN

k¼1;i 6¼k

Yijk � dij; 8i; j ð14Þ

Cluster Computing

123

XN

i¼1;i 6¼k

Yijk ¼ dkj; 8k; j ð15Þ

XM

j¼1

dij ¼ 1; 8i ð16Þ

Note that in Eq. (11) contains the multiplication of two

decision variables, f(v) and dij. Considering the hetero-

geneity of PMs and the stochastic nature of VM requests,

the problem is transformed into a multi-objective non-lin-

ear programming problem. Specifically, a heterogeneous

cluster contains multiple PMs with different hardware

configurations (e.g. number of CPU cores). The different

task requests may be independent of each other or have

dependencies.

The objective function in Eq. (11) attempts to minimize

total cost used to schedule all VMs and the time satisfac-

tion function cost per working hour. Equations (12) and

(13) illustrate that all VMs must be allocated to at most one

PM, and the start of all allocated VMs must be VM 0

(dummy VM). Equation (14) is the relationship constraint

of (Yijk) and (dij). Equation (15) verifys that VM i is pro-

cessed before VM k in PM j only when VM k is allocated

to PM j. Equation (16) assures that a VM can be allocated

to at most one PM.

3.5 Constraints

To minimize Z, VMs should be placed or reassigned to the

most appropriate PM, but this process should satisfy the

following six strict constraints.

Constraint 1: (Capacity) In each PM, resource assign-

ment cannot exceed its capacity.

Each cluster usually contains a limited number of PMs.

For the resources (cpu, memory, etc.) of each PM, the total

amount of resources allocated to all the VMs cannot exceed

the resource capacity of the PM. Assume that a VM request

includes two resource types (CPU, memory). Let the sets of

VMs and PMs be denoted by V and P, respectively.

Without loss of generality, let V ¼ v1; v2; . . .; vNf g and

P ¼ p1; p2; . . .; pMf g. For each requested VM v, let av be

the number of CPUs required and let bv be the memory

requirement (in GiB). For each PM p, let Cp be the number

of CPUs it can support, Mp be the amount of memory (in

GiB). In addition, each v 2 V and each p 2 P, let be xvp the

binary assignment variable, which takes the value 1 if VM

v is assigned to PM p and 0 otherwise. The following

constraints are required:
X

p2P
xvp ¼ 1; 8v 2 V ð17Þ

X

v2V
avxvp �Cp; 8p 2 P ð18Þ

X

v2V
bvxvp �Mp; 8p 2 P ð19Þ

Among them, (17) ensures that every VM is assigned to

exactly one PM. (18) and (19) are the constraints on the

resource capacity of the number of CPUs and the total

memory size of each PM p, respectively.

Constraint 2: (Re-execute) When task instances are

migrated to a new PM, they need to be re-executed. To

calculate the impact of migration on the execution of task

instances, here we define the following migration time as

follows:

etij ¼
szi
psj

ð20Þ

where etij indicates the execution time of the task instance i

on pj and psj is the processing speed of pj.

mti ¼ viFT � viST ð21Þ

mti þ etij 6 dli ð22Þ

where viFT indicates the migration finish time of the running

task instance i, viST represents the migration start time of

running task instance i and mti means the time overhead of

one instance due to migration.

Constraint 3: (Transfer) Time-sensitive services (such as

long-running services) have latency requirements for crit-

ical data transfers between VMs.

To meet the ultra-low latency requirements, VMs with

critical frequent interactions should be assigned to the same

PM. Let f v; v0ð Þ denote whether v and v0 should be colo-

cated on the same PM, with f v; v0ð Þ ¼ 1 indicating yes and

f v; v0ð Þ ¼ 0 otherwise. The transfer constraint can be

expressed as:

f v; v0ð Þ ¼ 1) PðvÞ ¼ P v0ð Þ; 8v; v0 2 P; v 6¼ v0 ð23Þ

P(v) denotes the PM assigned to VM v , Pðv0Þ denotes the
PM assigned to VM v0.

Constraint 4: (Transient) During the migration process,

the VM instance will not be destroyed before it is estab-

lished on the new PM.

The reassignment of a VM is achieved through a live

migration, which means that the VM is transferred to the

final machine while keeping it running on the original one.

Such resources (e.g., CPU and memory) are needed on both

machines (initial and final machines) during a live migra-

tion, as the processes use the resources on both machines

during the reassignment.

Constraint 5: (Spread) Safety-related services need to

assign their VMs to different PMs.

Cluster Computing

123

A specific function in a high performance application is

usually implemented on multiple VMs to support concur-

rent operations. Since some VMs are CPU sensitive, but

not sensitive to memory, they cannot be placed on the same

PM , otherwise other resource (such as memory) would be

seriously wasted.

Constraint 6: (Trait) The task request for the specified

traits can only be placed on the PM that the traits match.

4 MO-FreeVM

In this section, we present the design of MO-FreeVM. The

goal of MO-FreeVM is to find a VM redistribution solution

that minimizes the overall cost (Equation (4)) and TSF

(Equation (5)). MO-FreeVM is consisted by two stages,

first placement (FP) and variable neighborhood searching

(VNS), collectively known as multi-objective two-stage

variable neighborhood searching (MO_STVNS). FP entails

simple and fast placement of VMs, along with placing as

many user requests as possible; VNS is aimed to reduce the

number of running PMs, which is mainly to vacate the

’’cold’’ PMs and process the VM on the ‘‘hot’’ PMs, so as

to improve the resource utilization of PMs.

4.1 System architecture

In the previous practice, one scheduling mode is mostly

used, but it is not good enough to minimize the number of

active PMs while improving the resource utilization of

PMs. Our design scheme proposed two modes of primary

scheduling and secondary scheduling, and added resource

prediction module at the same time. Although the added

module brings time complexity to the design and devel-

opment, it can be found through comparative analysis that

the solution in this paper can more accurately predict the

number of task requests arriving in each scheduling cycle

and improve the resource utilization.

Figure 1 shows the relationship between the core mod-

ules of the cloud scheduling platform, as explained below:

(1) Heterogeneous resource requests include task

requests for long-running services and batch jobs,

where the amount of data requested is different for

each scheduling cycle and is specified by using a

metadata file for the name, type, VM image and

number of resources requested.

(2) The parameter configuration module is used to store

and read the status information of the PMs, which

include the position of the VMs in the PMs and the

active/inactive status of the PMs.

(3) The status information of PMs and task requests in

each scheduling cycle are initially delivered to the

first placement (FP) module. The fewest number of

active PMs are exploited to place as many vm

(requests) as possible to achieve energy saving and

thus obtain the minimum placement cost. The

primary scheduling module is Virtual Machine

Placement (VMP), a VMP scheme where each

virtual machine can only be placed on one PM.

(4) The secondary scheduling module refers to Virtual

Machine Migration (VMM), which aims to find a

VM redistribution scheme to maximize the reduction

of the total cost and TSF. MO_STVNS uses Shift,

Swap, and Replaces to perform neighborhood search.

Eventually, the effect of simultaneously compacting

‘‘hot’’ and ‘‘cold‘‘ PMs are achieved, which frees up

underutilized machines and further reduces energy

consumption.

(5) Determining which PMs are active and which are

inactive from the secondary scheduling results. The

PM active/inactive module records the status of all

PMs and the billing of PMs.

(6) The resource prediction module predicts the number

of resource requests for the next cycle based on the

number of historical resource requests released

before the current cycle, further predicts how many

resources will be released in the current cycle.

(7) The MO-FreeVM scheduler module is used to obtain

all PMs and task requests information, execute

primary and secondary scheduling, PM active/inac-

tive policies, and calculate the cost for each

scheduling cycle.

4.2 First placement

Each resource request contains two attributes in addition to

the basic information (ID number): qualitative attributes

(characteristics, e.g. the operating system is Windows/

Fig. 1 MO-FreeVM framework

Cluster Computing

123

Linux) and quantitative attributes (resources, e.g. CPU

requirements). Accordingly, each PM also possesses

explicit qualitative attributes, the current status (active/in-

active) and the current amount of resources remaining. The

FP algorithm requires to locate the PM that corresponds the

qualitative and quantitative attributes of the task request

and then placing the resource request to the selected PM.

For a given VM request, there are generally multiple PMs

that satisfy the requirements. Furthermore, for a given PM,

there are usually multiple VM requests competing for

available PM resources simultaneously. Therefore, we need

to consider how to deploy these VM requests so that VMs

placement can be completed as quickly as feasible. To

reduce the amount of work for subsequent VNS, we strive

not to use underutilized PMs as much as possible during

the FP.

The objective of FP is to place as many task requests

(especially from batch jobs) into the PMs as quickly and as

much as possible. Firstly, the long-running services and

batch jobs are sorted in positive order according to the size

task requests. Secondly, a set of valid PMs are obtained

according to the principle of consistency between VM

requests and PMs qualitative attributes, and then the PMs

are ranked from ‘‘hot’’ to ‘‘cold’’ according to the lowest

utilization of the multiple resources. Finally, in order to

ensure that more VM requests are placed on the most

appropriate PMs, we place sequentially ordered requests

one by one on the ‘‘hottest’’ PMs corresponding to them.

The above description is the FP algorithm. The one-stage

(FP) of MO-FreeVM that we have designed can be applied

to various VMP algorithms. The purpose of first placement

is to optimize a batch of candidate PMs, thus diminishing

the search space for VNS.

4.3 Variable neighborhood searching

Considering that pure VNSs are still susceptible to local

optima, we are motivated to design a two-stage variable

neighborhood search algorithm to further improve the

global search capability and overcome local optima. Our

first-stage algorithm (First Placement) reduces the search

space for the second-stage algorithm (Variable Neighbor-

hood Searching) by quickly vacating underutilized PMs,

thus improving the second-stage search capability.

Variable Neighborhood Search is a meta-heuristic

method proposed a few years ago [55], which is based on a

simple principle: the neighborhood is systematically

changed during the search process. It has evolved very

rapidly, with dozens of papers published or forthcoming.

Many extensions have been made, mainly to solve large

problem instances. In most schemes, there is an effort to

maintain the simplicity of the basic scheme. [56] proposed

a VNS algorithm for the task assignment problem with

constraints and compared the performance with other local

search algorithms. [57] proposes a hybrid genetic algorithm

and variable neighborhood search algorithm to reduce the

total cost of task execution without increasing the maxi-

mum completion time of the system. The VNS algorithm

has received relatively little attention when studying the

scheduling problem of VMs in cluster management. The

MO_STVNS proposed in this paper aims to consider the

VMs scheduling problem in dynamic cluster management,

and we study the multi-objective optimization problem

with the objective of minimizing the total cost and time

satisfaction functions. Simultaneously, it is further

demonstrated that our MO_STVNS algorithm can find the

minimum number of active PMs.

The MO_STVNS is able to find the optimal solution in

the current neighborhood and to jump out of the current

neighborhood to find a better solution. Therefore, it has a

high probability of converging on the global optimal

solution as long as the neighborhood structure is set

appropriately. MO_STVNS with three neighborhood

structures, in the case of the same initial solution, to deepen

the search space by means of a two-level search, if the

optimal solution can be found in the current neighborhood,

then update the current solution and jump out of the local

optimal solution (See Algorithm 1 for details). In the

process of continuous optimization, the MO_STVNS

algorithm quickly finds the approximate global optimum

solution by successive iterations (see Algorithm 2 for

details).

After first placement is accomplished, the resource uti-

lization of the overall cluster is first estimated. When the

average resource utilization of PMs surpasses a certain

threshold and satisfies constraint, the VNS algorithm is

triggered to tune the migration of VMs that have been

placed VMs on the PMs, liberating the underutilized PMs

to decrease energy consumption, while making the residual

resources on the PMs more balanced to promote the total

resource utilization of the cluster.

As Fig. 2 illustrates the scheduling process for VM

requests, we have selected three PMs available for placing

VM requests. The VMs redistribution is a process of

migrating as many VMs as possible from the ‘‘cold’’ PMs

to the ‘‘hot’’ PMs, which relieves the ‘‘cold’’ PMs and thus

saves energy. Our suggested VNS algorithm is employed

for VMs migration, and the VNS search process covers

three solutions: shift, swap, and replace. As shown in

Fig. 2, shift means reassigning a VM from one PM to

Cluster Computing

123

another; swap means exchanging two VMs on different

PMs; replace means to have attempted to move a zombie

VM8 from PM2 to PM3 and then reassign VM6 from PM1

to PM2.

The neighborhood is the crucial to the local search

algorithm. Generally speaking, the neighborhood is defined

as the space of all solutions obtained by performing a

predefined move. Different neighborhoods can be con-

structed depending on the move defined. Three neighbor-

hoods are used in our proposed variable neighborhood

search process, which are: shift neighbourhood, swap

neighbourhood, replace neighborhood.

1. Shift A shift move describes the reallocation of a VM

from one PM to another PM. The shift neighbourhood

is defined as the set of reallocation schemes that can be

achieved by a shift move. A VM is randomly picked

from an existing VMs allocation scheme (the current

solution) to place it into the vacant degree in another

PM, forming a solution within the shift neighbourhood,

which is then continuously optimised. The vacant

degree (VD) is the region in a PM available for placing

VMs, a PM may have more than one VD. In addition,

when placing VMs in the VD of a PM, it is essential

not to cause any overlap. As shown in Fig. 2, VD1–

VD5 are able to place VM requests, and VD5 is the

largest VD. Since the upper bound on the fundamental

number of shift neighbourhood is O(N). Therefore, the

time complexity of the local search iterations is upper

bounded by OðN � sÞ when using shift neighbourhood.

s is the time spent exploring an adjacent solution which

is approximately equal to the time spent in the

continuous optimization process.

2. Swap A swap move refer to the exchange of two VMs

allocations on different PMs. The swap neighborhood

is defined as the set of reallocation schemes that can be

achieved by a swap move. A solution in the swap

neighborhood is formed by swapping the placement of

two similar VMs in a given solution and then

continuously optimizing. After sorting all VMs by

size, then the two adjacent VMs are of similar size.

VMs with the same or similar size are not recom-

mended to take the swap move, as swapping their

placement does not change the solution. As shown in

the figure, the neighborhood of the solution is obtained

by swapping VM3 and VM7 , and then the optimal

solution is obtained by successive optimization.

Depending on the distribution of VMs, the cardinal

number of swap neighborhood varies from O(N) to

O(N2). Therefore, the time complexity of the local

search iteration when using the swap neighborhood is

from O(N � s) to O(N2 � s).
3. Replace The replace neighborhood is a subset of the

shift neighborhood. When using the replace neighbor-

hood, the neighborhood of a given solution is opti-

mized by picking a small VM from it and putting that

VM back to one of the largest vacant points, and then

continuous optimization. The upper bound of the

cardinal number of replace neighborhood is O(N2),

and the upper bound of the time complexity of the local

search iteration is O(N2 � s).

VNS is a two-level search algorithm that attempts to

vacate underutilized PMs one by one from ‘‘cold’’ PMs to

‘‘hot’’ PMs, while ensuring all VMs placed on a PM are

vacated at minimal cost. When the total overhead of

vacating all the VMs placed on a PM is less than the total

revenue, the operation to vacate the PM is performed,

otherwise the vacating operation is stopped. The one-level

Fig. 2 The instance of

scheduling with n vms

Cluster Computing

123

search is devised to tackle ‘‘cold’’ PMs, i.e., to migrate

VMs on a ‘‘cold’’ PM to a ‘‘hot’’ PM. However, the sec-

ondary search is to further condense the ‘‘hot’’ PMs.

Therefore, VNS is conceived to pursue the second-level

search on the basis of the primary search and eventually

identify the optimal solution within the two-level search

neighborhood.

As we have analyzed above, the upper bounds on the

time complexity of the local search iterations using three

neighborhoods (shift neighborhood, swap neighborhood,

replace neighborhood) are O N � sð Þ, O(N2 � s) and OðN2 �
sÞ respectively. Thus, the upper bound on the time com-

plexity of the VNS process is an upper bound on the time

complexity of the three candidate neighborhoods:

OðN2 � sÞ. While the upper bound on the time complexity

of MO_STVNS is expressed as an upper bound on the time

complexity of the process: OðN3 � sÞ.
VNS is a modified local search algorithm, as illustrated

in Fig. 3, which first declares N levels of neighborhood for

the preliminary solution; then the search is performed using

the neighborhood structure(e.g., one-level) until a local

optimal solution is discovered. The variable neighborhood

search algorithm that we have designed is composed of a

two-level search to seek the optimal solution in three

branches, and then pick the optimal one of them, each

branch is a two-level search procedure. There are three

moving approaches that can be applied to neighborhood

searching, which are shift, swap, and replace. The primary

level of the two-level search algorithm is a stochastic move

of the current VMs which begins with the current place-

ment, and it explores all three moving approaches. The

second level of search allowed another move based on the

outcomes of the first level of search, which is not random,

but indicated the solution that has the least cost of each

possible moving scheme and that enables the total cost of

the two-level search less than the cost of the first level of

search. Once such a settlement is achieved in the current

movement, it is returned directly as the optimal solution for

this branch, without any further consideration of the

residual moves.

The pseudo-code of multi-objective two-stage variable

neighborhood searching (MO_STVNS) is shown in Algo-

rithm 1. Line 2-4 represent a random selection of place-

ment scheme s
0
in one of the neighbors of the current

placement state s (e.g., shift). when a neighborhood change

is employed, TSF is calculated based on Equation (5).

From line 5,6 indicates doing a secondary search on top of

the primary search. Find the local optimal solution s
00
in a

kind of neighborhood of s
0
(e.g., shift) for that neighbor-

hood. Where lines 7-13 explore the optimal solution, and if

s
00
is better than s

0
, then s

0
is returned as the optimal solution

of this branch and update the TSF at the same time;

otherwise the other neighborhoods of s
0
are searched for a

solution better than s
0
. Lines 15-20 show that if there is no

better solution than s
0
, then s

0
is returned as the optimal

solution of this branch. Meanwhile, the TSF of the current

solution as Max_TSF.

Fig. 3 The process of variable

neighborhood search

Cluster Computing

123

4.4 PM start-stop

At the end of the VNS algorithm, some underutilized PMs

are vacated. In order to save energy, the vacated PMs need

to be shut down. As more and more VM requests come in,

randomly to deactivate the vacated PMs or to activate more

of PMs. This part of the start-stop policy that we have

described determines the state of the PMs (active/inactive).

First, the VNS algorithm generates a list of the vacated

start-up PMs. The start-stop policy then uses a custom

Slidingk algorithm [32] to predict how much resource Rl

will be released on the PM at the end of the current cycle

and how much of the customer’s task request Rq will be

reached in the next cycle. Assuming that the total resource

of the current remaining PMs is Rm. If ðRm þ RlÞ is greater
than Rq, it indicates that the current machine resource can

satisfy the request in the next cycle. It is also a waste of

power to turn on vacated PMs, so we need to shut down

some of the vacated PMs, with the resources on the shut

down PMs are not available. Since some PMs in the active

PMs list are selectively shut down, the total resources of

these active PMs should be less than jRq � Rm � Rlj. Once
ðRm þ RlÞ is less than Rq, it indicates that the resources of

the current machine are not available for the next cycle ,

that it is not possible to shut down the vacated PMs.

Instead, we need to reactivate a batch of PMs to satisfy the

requests for the next cycle.

4.5 The proof of closest lower bound
for the number of active PMs

In the process of optimizing the solution, it is usually

allowed to produce infeasible solutions in the intermediate

process. Specifically, we introduce the evaluation function

Hlb
com; EðXÞ

� �
for finding the optimal feasible solution. In

the following, we describe the two components of the

evaluation function in detail.

Given a rectangular container S (Space for active PMs)

of width W > wn and the height of S is H (number of

active PMs). In this context, H is a number, not a set. The

set of VM requests is defined as VM ¼
VM1;VM2; . . .;VMi; . . .;VMNf g with fixed width

w1,w2,…,wi,…,wN , where i 2 ½1;N�. The set of PMs is

defined as PM ¼ PM1;PM2; . . .;PMp; . . .;PMM

� �
, where

p 2 ½1;M�. Without loss of generality, Let the side of S be

Cluster Computing

123

parallel to the coordinate axis, and let the coordinate of the

center of VMi is ðxi; yjÞ.
E(X) is an energy function that measures the infeasi-

bility of the optimization process, where X is its configu-

ration denoted by x1; y1; . . .; xi; yi; . . .; xn; ynð Þ. The E(X) is

defined as follows:

EðXÞ ¼
XM

p¼1

XN

i¼1

1

2
V2
pi þ

XN�1

i¼1

XN

j¼iþ1

1

2
V2
ij ð24Þ

Each V represents the overlap. Vpi denotes the overlap of

VMi with PMp:

Vpi ¼ max jxij þ
wi

2
�W

2
; 0

� 	
ð25Þ

Vij is the overlap between VMi and VMj:

Vij ¼ max
wi

2
þ wj

2
�

ffi
xi � xj
� �2þ yi � yj

� �2
q

; 0

� 	
ð26Þ

Definition 1 To find the optimal solution, assume that the

solution space S is a rectangular container. If the rectan-

gular height of the solution S is to be set to H, and then its

configuration X is continuously optimized, S becomes

feasible, but by setting the rectangular height to any H � e
(e[0) and then continuously optimizes its configuration

X, S is infeasible, then H is the compact height of S,

denoted by Hcom of S.

Generally speaking, the optimal feasible solution can be

obtained by only continuously optimizing Hcom. Depending

on the target of the problem (to gain the feasible solutionwith

the smallest possible height of rectangular), the quality of the

solution can be judged using Hcom of the solution. When

comparing two feasible solutions, the smaller Hcom, the

better the optimization is obviously. Unfortunately, it is time

consuming to determine the Hcom exactly. So we make cer-

tain compromises and approximately denote it with the

closest lower bound of Hcom (represented as Hlb
com).

Definition 2 Suppose a solutionS has compact heightHcom,

and l � n\Hcom �ðlþ 1Þ � n, l 2 M � 1 and l[0, then l �
n is the closest lower bound height (represented asHlb

com) ofS

with regard to interval n. Here, l denotes the number of active

PMs and the interval n (n[0) denotes the height of an active

PM. As shown in Fig. 4, the grey rectangle represents the

solution space , where the height of each PM is denoted by n.

It is assumed that all PMs have the same height.

Theorem 1 For any two feasible solutions S(i) and S(j), if

Hlb
comðjÞ[Hlb

comðiÞ, then
oHcomðjÞ

on [oHcomðiÞ
on .

Proof According to Definition 2, let Hlb
comðiÞ ¼ li�

Hlb
comðjÞ ¼ lj � n; li; lj 2 M � 1.

The first-order derivative of Hcom, and constraints are

given as follows:

li\
oHcomðiÞ

on
� li þ 1

lj\
oHcomðjÞ

on
� lj þ 1

subject to the constraints:

*Hlb
comðjÞ[Hlb

comðiÞ
)li [lj;)lj � li þ 1

Hence, the following result can be achieved:

oHcomðjÞ
on

[lj � li þ 1� oHcomðiÞ
on

The closest lower bound height (Hlb
com) is an approximation

of the compact height. When comparing two solutions Si

and Sj, if Si has a smaller Hlb
com(i), then its compact height

will also be smaller (Theorem 1), which implies that Si is

better. But if they have the same Hlb
com , we will further

compare their E(X) (infeasibility) to determine which one

is better. For example, in Fig. 4, the Hlb
com of solution Si is

ln, the Hlb
com of solution Sj is (l?1)n. So the compact height

of Si is between ln and (l?1)n, and the compact height of

Sj is between (l?1)n and (l?2)n. So the compact height of

Si is certainly smaller, so Si is obviously better. After the

Fig. 4 The Hlb
com of solution Si

is ln, the Hlb
com of solution Sj is

(l?1)n

Cluster Computing

123

completion of Algorithm 2, we have transformed the final

solution into a feasible and compact solution. h

To boost the search performance of the MO_STVNS

algorithm, we further integrate it into the iterative local

search framework. Iterative local search is a prominent

heuristic algorithm that is commonly used to raise the

search performance of local search algorithms. When the

local search process terminates, it partially modifies the

current solution and resumes the local search. Algorithm 2

gives the pseudo-code of the iterative local search

MO_STVNS for task requests scheduling in cluster man-

agement. line4-line12 represents the continuous optimiza-

tion process involving all the neighborhoods. In each

iteration, MO_STVNS is called to improve the current

solution. If MO_STVNS outperforms the existing solution,

an update to the existing solution is accepted. The con-

tinuous optimization process is terminated when the max-

imum iteration time (IterationLimit) is reached. The

process finds the lower bound of the number of active PMs

Hlb
com (In Algorithm 2, Hlb

com is abbreviated to H.), i.e., it

finds the optimal solution.

5 Evaluation

This section describes our experimentation. Since MO-

FreeVM is essentially an algorithm for allocation, our

testbed is built in python for efficiency.

5.1 Experimental set-up

The testbed is associated with a mysql database in order to

visualize the placement and migration of the VMs and to

facilitate access to the data. Furthermore, MO-FreeVM has

a series of external interfaces that can be interfaced with

any data center cluster system.

The algorithm is compared with GWO [43], SA [45] and

(GA) [44] with two different traces from publicly available

real workloads, Google Cluster Data (GCD) and Alibaba

Traces (AT). Simulations are conducted on a PCwith a Core

i7, 3.4GHz CPU, 16GB RAM, Windows 10 and Python3.

Machines of Google cluster share a common cluster

management system, which distributes workloads to the

machines [58]. The heterogeneous workload is comprised

of two types of task requests. The first type is long-running

services used to handle short-lived latency-sensitive

requests, such as web search and Gmail. The second type is

batch jobs such as MapReduce [59] and machine learning

submitted by internal users, which have a lifetime ranging

from a few seconds to a few days. Each batch job consists

of one or more tasks that perform different computational

logic, and directed acyclic graph (DAG) can present their

existing dependencies [60].

In 2017, Alibaba [61], the largest cloud service provider

in China, released a publicly accessible dataset. The dataset

consists of 1.3K machines running long-running services

and batch jobs over a 12-hour period. Unlike the hetero-

geneity of Google cluster, the specification of all servers is

the same, with 96 cores and 1 unit of memory standardized.

The usage file records the usage of runtime resources,

including CPU, memory, Network and IO.

Cluster Computing

123

The trace providers indicate that the priority of task

requests is related to the type of workload, long-running

services have a higher priority. There are two reasons for

the frequent scheduling of task requests. One is that there

are many long-running services being scheduled. The other

is that tasks are terminated and batch jobs need to be

rescheduled. Fortunately, despite the large number of jobs

starting and stopping, these long-running services do not

have a significant impact on usage. Therefore, the sched-

uler can safely ignore long-running services when pre-

dicting cluster utilization.

5.2 MO_STVNS over existing solutions

The parameter settings of the comparison algorithm are

described.

5.2.1 GWO algorithm parameter setting

GWO is inspired by the gray wolf population, in which each

possible solution is assumed to be a wolf, and the highest

scoring solution are the dominant wolves. The hunting of the

gray wolves is guided by alpha (a), beta (b) and delta (d)
wolves. Consequently, the best solution are generated by the

alpha (a) wolves, followed by beta (b) and delta (d) wolves.
The rest of the candidate solutions are assumed to be omega

(x) wolves. To facilitate the calculation, the initialization

parameters for GWO are given below [62, 63]: it is assumed

that the positions of the wolves of a and b are set to a is 0.5

and b 2 ð0; 2Þ respectively, with b being mainly responsible

for assisting a in the decisionmaking.Meanwhile, in order to

reduce the number of iterations in the calculation, we assume

that the number of wolves seeking value is 5 and the number

of grids per dimension is 10.

5.2.2 SA algorithm parameter setting

The simulated annealing is inspired by the annealing pro-

cess in metalwork. We initially set the temperature very

high and then let it cool slowly as the algorithm runs. The

core of the SA algorithm is to accept the current non-

optimal solution with a certain probability, thus jumping

out of the local optimal solution and continuing the search,

which leads to the global optimal solution. The initial

parameters for SA are given below [46], where the desir-

ability of a source PM j as a sigmoid-like shaped function

DsrcðujÞ ¼ e�a�ðujÞ3 (a=6) of its utilization uj and the desir-

ability of destination PM h is defined as a gaussian function

Ddst uhð Þ ¼ b � e�c� uh� 1
2ð Þ2 (b ¼ 0:85, c ¼ 20) of its utiliza-

tion uh.

5.2.3 GA algorithm parameter setting

Genetic algorithms are inspired by the process of natural

selection. The GA improves the structures in this popula-

tion by performing selection, followed by crossover and

mutation. After several generations, sufficiently good

solutions will be formed in the population. Consider our

scenario and the existing parameter settings for the works

associated with VM scheduling using the GA method

[26, 64]. The population size is set to 200, with crossover

and mutation probabilities of 0.95 and 0.05, respectively.

Our proposed MO_STVNS algorithm involves the rel-

evant parameters of cost and TSF. The parameters of cost

(a) Google Cluster Data (b) Alibaba Traces

Fig. 5 Comparing the runtime overhead of different algorithms

Cluster Computing

123

include wP, wM and wB, we set wP=2 and wM=wB=1, due to

the fact that Pcost has a larger share compared to Mcost

and Bcost. The parameters of TSF include a and b, and we

set aþ b ¼ 1 and a =0.25.

5.3 Experimental results and analysis

Figure 5a shows the runtime overhead when executing

different number of tasks under the GCD; Fig. 5b shows

the runtime overhead when executing different number of

tasks under the AT. The unit of runtime overhead in Fig. 5

are seconds. By comparing the algorithm data with the

runtime overhead of the best solution obtained by each

algorithm, it can be concluded that the runtime overhead of

each algorithm will increase with the increase of task data.

The MO_ STVNS and the GWO have a very low runtime

overhead due to their relatively simple allocation opera-

tions, while the GA performs a series of more complex

operations and therefore has a higher overhead. As can be

seen from Fig. 5a, when the number of tasks volume is

small, the runtime overhead of MO_STVNS algorithm is

similar to that of GWO algorithm, but as the tasks volume

increases, the average cost increase speed of GWO is

14.65% faster than that of MO_STVNS. Figure 5b shows

that the runtime overhead variation of each algorithm is

relatively flat as the tasks volume increases, and the run-

time overhead of the MO_STVNS algorithm gradually

becomes larger when the tasks volume is larger, but it also

has a smaller runtime overhead than the other algorithms.

This is due to the large number of heterogeneous tasks in

the GCD with great difference in the task size, as well as

batch jobs account for a large proportion. However, the AT

has homogeneous tasks, more long-running services, and

almost the same size of tasks. Therefore, in terms of

algorithm running time overhead, the MO_STVNS algo-

rithm outperforms the other algorithms, and the GA algo-

rithm has the largest runtime overhead. From the above

analysis, we can see that our proposed MO_STVNS algo-

rithm is advantageous in terms of runtime overhead.

Figure 6a and b show the results of TSF in the Google

Cluster Data and Alibaba Traces for MO_STVNS, GWO,

SA and GA algorithms. Among them, each iteration cycle

of GCD and AT reach 20 and 50 task requests respectively.

The results illustrate that the convergence speed of

MO_STVNS algorithm is faster than other algorithms. By

comparing Fig. 6a and b , it is observed that the TSF of SA

and GA gradually decreases with the increase of the

number of iteration cycles. For GCD and AT, the average

TSF decline rate of GA is 60.67% to 50.77% slower than

that of SA. Compared with the SA, the GA suffers from

poor local search capabilities and a tendency to fall into

premature convergence. The convergence speed of GWO is

slower than that of other algorithms. When the iteration

cycle increases to about 600, the TSF remains small change

(a) Google Cluster Data (b) Alibaba Traces

Fig. 6 Convergence of different algorithms

Cluster Computing

123

and GWO is close to convergence. When the iteration

cycle of MO_STVNS algorithm is greater than 400, the

algorithm tends to converge because MO_STVNS reduces

the search space and further reduces the search time. The

MO_STVNS algorithm tends to converge when the itera-

tion period of the algorithm is greater than 400. This is due

to the fact that VMs will be grouped based on historical

experience before using MO_ STVNS to find the most

suitable PM. Infeasible solutions are updated and contin-

uously corrected in each search iteration, so that

MO_STVNS has the least convergence cycles. Between

300 and 400 cycles, the previously arriving VM requests

are not fully released and a large number of PMs need to be

enabled to handle the newly arriving VM requests, result-

ing in an increasing TSF. Our proposed MO_STVNS

algorithm has a better vacating effect than other algo-

rithms, so that the minimum number of active PMs is

reached at 300 cycles. For the heterogeneous Google

Cluster Data, between 300 and 400 cycles, the

MO_STVNS algorithm no longer performs vacating PMs

and needs to enable more heterogeneous PMs, so there is a

jump in the TSF of our proposed MO_STVNS algorithm

from 300 to 400 cycles.

Figures 7 and 8 represent the resource utilization of CPU

and memory for different algorithms with the same number

of active PMs for the Google dataset and the Ali dataset,

respectively. Figures 8(a)–(d) show the utilization of dif-

ferent attribute resources in a heterogeneous environment,

taking CPU a resource as an example, Figure 8 shows the

utilizations of 100 active PMs. Taking CPU a resources as

an example, there are about 36 active PMs whose CPU

utilizations exceed 23% under the SA 28 active PMs under

the GA and only 21 active PMs under the GWO. But when

leveraging MO_STVNS, the highest CPU utilization

ascends to 47%, which is much better than other algo-

rithms. Figure 7 shows the utilization of different resources

in a homogeneous environment, and we observe that the

resource usages of PMs reach convergence. Taking CPU as

an example, when analyzing the convergence speed of the

CPU, MO_STVNS is 20.11% faster than SA and GA, and

25.06% faster than GWO. Furthermore, the average uti-

lizations of the top 60 ‘‘hot’’ PMs under MO_STVNS,

GWO, SA and GA are 82.11%, 80.65%, 81.33% and

80.22% respectively. To enhance resource utilization of

PMs, as many VMs as possible must be hosted on each PM,

thus minimizing the number of active PMs in the cloud

data center.

The boxplot is consisted by five numerical points:

minimum (min), lower quartile (Q1), median (median),

upper quartile (Q3), and maximum (max). The mean can

also be added to the boxplot. In this case, the lower quar-

tile, median, and upper quartile form a ‘‘box with com-

partments’’. In the boxplot, there is a line in the middle of

the box that represents the median of the data. The top and

bottom of the box are the upper quartile and the lower

quartile of the data respectively, which means that the box

(a) Utilization of CPU (b) Utilization of Memory

Fig. 7 Comparison of resource utilization of different algorithms under Alibaba traces

Cluster Computing

123

contains 50% of the data. The height of the box therefore

reflects, to some extent, the degree of volatility of the data.

In addition, an extension line is created between the upper

quartile and the maximum value, which becomes a

‘‘whisker’’. If there is no number larger than the maximum

observation, the upper whisker limit is the maximum value.

Figures 9 and 10 reflect the balance of different resource

utilization under different data sets. Taking Fig. 10a for

example, when analyzing the balance of CPU A resource

utilization, it is observed that MO_STVNS outperforms

GWO by 51.97%, SA by 21.56% and GA by 58.27%. To

maximize resource utilization and balance the use of

resources (CPU and memory), MO_STVNS can reallocate

VMs to PMs, after adding VM requirements to the used

PM resources, then it can rank the VMs hosted by over-

loaded PMs and select the most imbalanced resource uti-

lization based on the absolutely difference between the

CPU and memory requirements of these VMs. Figures 7

(a) Utilization of CPU A (b) Utilization of Memory A

(c) Utilization of CPU a (d) Utilization of Memory a

Fig. 8 Comparison of resource utilization of different algorithms under Google Cluster data

Cluster Computing

123

and 8 show all active PMs sorted from lowest to highest

resource utilization, which reflects the trend of PMs

resource utilization. The boxplots shown in Figs. 9 and 10

show a set of statistical plots of data dispersion, mainly

used to reflect the characteristics of the original data dis-

tribution, and also to allow comparison of the character-

istics of multiple data distributions.

Figures 11a and b compare the average number of active

PMs for different algorithms with different data sets. When

calculating the average number of active PMs, the average

value of five consecutive measurements under the same

iteration period is considered. We can infer that the average

number of active PMs increases with the iteration period

for both heterogeneous and homogeneous environments,

and the MO_STVNS algorithm has a significant effect in

terms of energy saving and is superior in the homogeneous

environment. As shown in Fig. 11a, with the increment of

iteration period MO_STVNS saves on average 25.94%

PMs compared with GWO, 10.29% PMs compared with

SA, and 20.30% PMs compared with GA. In Fig. 11b , with

the increment of iteration period MO_STVNS saves on

average 35% PMs compared with GWO, 27.02% PMs

compared to SA, and 32.47% PMs compared with GA.

This difference is mainly due to the longer lifecycle of task

requests in the AT and the fact that the number of task

requests released per iteration cycle is higher than that of

the GCD.

It can be seen from Tables 2 and 3, all the cost of

MO_STVNS outperform other comparative algorithms in

both GCD and AT scenarios for different iteration cycles

generating different numbers of task requests. Taking

Table 2 for example, in terms of average total cost,

MO_STVNS is reduced by 26.92% compared to GWO,

24.02% compared to SA and 33.75% compared to GA.

MO_STVNS, GWO, SA and GA employ different

rescheduling strategies to clean underutilized PMs and

improve utilization, whereas MCost depict their task

rescheduling cost. Compared to the others, MO_STVNS

enjoys the lowest PM migration cost, reduces migration

frequency, and improves resource utilization more effec-

tively. Moreover, having a larger BCost under GCD is due

to the larger Balance Ratio of CPU and Memory resources

under Google dataset. From the impact of PCost, it is

shown that the TSF of MO_STVNS algorithm is lower than

GWO, SA and GA, respectively, which means that

MO_STVNS brings performance improvement in mini-

mizing the TSF.

6 Conclusion

More and more cloud service providers are deploying their

services to data centers. Nevertheless, cluster management

in large Internet data centers needs to both guarantee

(a) The balance of CPU (b) The balance of Memory

Fig. 9 Comparison of the balance of different algorithms under Alibaba Traces

Cluster Computing

123

cluster performance and improve the execution time of task

requests. In this paper, we analyze cluster management

issues for colocated task requests and propose two new

strict objectives: minimizes both the total cost and TSF.

A MO_STVNS algorithm based on resource prediction is

proposed to solve the problem of resilient resource man-

agement, and a MO-FreeVM scheduler based on this

algorithm is implemented. The performance evaluation

shows that MO_STVNS maximizes resource utilization

and minimizes the number of active PMs, running over-

head, TSF, and total cost. All these results are experi-

mentally validated with two different datasets and

compared with state-of-the-art algorithms. When the

number of tasks volume is small, the RO of MO_STVNS

algorithm is similar to the result of GWO algorithm, but as

the task volume increases, the average cost increase speed

of GWO is 14.65% faster than that of MO_STVNS. For

GCD and AT, the average TSF decline rate of GA is

(a) the balance of CPU A (b) the balance of Memory A

(c) the balance of CPU a (d) the balance of Memory a

Fig. 10 Comparison of the balance of different algorithms under Google cluster data

Cluster Computing

123

60.67% to 50.77% slower than that of SA. The average

utilizations of the top 60 ‘‘hot’’ PMs under MO_STVNS,

GWO, SA, and GA are 82.11%, 80.65%, 81.33%, and

80.22% respectively. When analyzing the balance of

CPU_A resource utilization, it is observed that

MO_STVNS outperforms GWO by 51.97%, SA by

21.56%, and GA by 58.27%. With the increment of itera-

tion period, MO_STVNS saves on average 25.94% PMs

compared with GWO, 10.29% PMs compared with SA, and

20.30% PMs compared with GA. In terms of the average

(a) Google Cluster Data (b) Alibaba Traces

Fig. 11 The average number of active PMs in different algorithms for both homogeneous and heterogeneous environments

Table 2 Comparison of all costs of different algorithms under Google

cluster data

Cost Cycle MO_STVNS GWO SA GA

TCost 100 4.02 4.38 4.55 4.8

200 7.35 10.91 9.52 11.07

300 10.45 14.35 14.24 15.95

400 13.4 20.18 19.07 22.43

500 15.26 22.76 21.61 27.32

MCost 100 2.15 2.16 2.34 2.41

200 3.45 4.95 4.12 4.87

300 5.42 6.40 7.11 7.67

400 6.69 9.93 9.54 12.24

500 7.37 11.01 10.87 14.47

BCost 100 0.87 0.93 0.89 0.99

200 1.98 2.11 2.02 2.63

300 2.53 3.21 2.92 3.82

400 3.75 4.98 4.55 5.16

500 4.39 5.72 5.03 6.87

PCost 100 1.00 1.29 1.32 1.40

200 1.92 3.85 3.38 3.57

300 2.50 4.74 4.21 4.46

400 2.96 5.27 4.98 5.03

500 3.50 6.03 5.71 5.98

Table 3 Comparison of all costs of different algorithms under alibaba

traces

Cost Cycle MO_STVNS GWO SA GA

TCost 100 4.63 6.03 5.53 5.8

200 7.65 10.99 9.27 11.04

300 12.26 16.03 14.57 16.56

400 17.01 21.64 19.06 22.84

500 23.69 29.12 26.53 32.03

MCost 100 2.90 3.18 2.99 3.12

200 3.77 4.80 4.07 4.93

300 6.52 7.81 7.54 8.05

400 8.96 9.37 9.06 10.23

500 13.15 15.06 13.76 15.70

BCost 100 0.3 0.42 0.39 0.45

200 0.86 1.31 1.17 1.53

300 1.14 2.32 2.03 2.45

400 2.11 3.53 3.27 3.64

500 3.05 4.97 4.45 5.40

PCost 100 1.43 2.43 2.15 2.23

200 3.02 4.88 4.03 4.58

300 4.60 5.90 5.00 6.06

400 5.94 8.74 6.73 8.97

500 7.49 9.09 8.32 10.93

Cluster Computing

123

total cost, MO_STVNS is 26.92% lower compared to

GWO, MO_STVNS is 24.02% lower compared to SA, and

MO_STVNS is 33.75% lower compared to GA.

In future work, we need to consider the impact of cor-

relation between different tasks on dynamic cluster man-

agement. In addition, the practical cloud environment,

there are more constraints involved as well as more

objectives. Therefore, we attempt to make these improve-

ments as part of our future work.

Author contributions Methodology, Shiyan Zhang; Writing-original

draft preparation, Shiyan Zhang; Writing review and editing, Shiyan

Zhang, Ran Wang; Funding acquisition, Yuchao Zhang. All authors

have read and agreed to the published version of the manuscript.

Funding The work was supported in part by the National Natural

Science Foundation of China (NSFC) under Grant 62172054, the Key

Project of Beijing Natural Science Foundation under M21030, the

NSFC under Grant 62072047, and the National Key R&D Program of

China under Grant 2019YFB1802603.

Data availability All data generated or analysed during this study are

included in the article.

Code availability Open source software is used.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants performed by any of the authors.

References

1. Birke, R., Podzimek, A., Chen, L.Y., Smirni, E.: Virtualization in

the private cloud: state of the practice. IEEE Trans. Netw. Serv.

Manag. 13(3), 608–621 (2016)

2. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E.,

Markakis, E.K.: A survey on the internet of things (iot) forensics:

challenges, approaches, and open issues. IEEE Commun. Surv.

Tutor. 22(2), 1191–1221 (2020)

3. Wan, J., Li, X., Dai, H.-N., Kusiak, A., Martı́nez-Garcı́a, M., Li,

D.: Artificial-intelligence-driven customized manufacturing fac-

tory: key technologies, applications, and challenges. Proc. IEEE.

109(4), 377–398 (2020)

4. Saxena, D., Singh, A.K., Buyya, R.: Op-mlb: An online vm

prediction based multi-objective load balancing framework for

resource management at cloud datacenter. IEEE Trans. Cloud

Comput. (2021). https://doi.org/10.1109/TCC.2021.3059096

5. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-ob-

jective optimization of container allocation in cloud architecture.

J. Grid Comput. 16(1), 113–135 (2018)

6. Liu, B., Li, P., Lin, W., Shu, N., Li, Y., Chang, V.: A new

container scheduling algorithm based on multi-objective opti-

mization. Soft Comput. 22(23), 7741–7752 (2018)

7. Kaewkasi, C., Chuenmuneewong, K.: Improvement of container

scheduling for Docker using ant colony optimization. In: 2017

9th International Conference on Knowledge and Smart Tech-

nology (KST), pp. 254–259. IEEE (2017)

8. Taherizadeh, S., Stankovski, V.: Dynamic multi-level auto-scal-

ing rules for containerized applications. Comput. J. 62(2),
174–197 (2019)

9. Kehrer, S., Blochinger, W.: Tosca-based container orchestration

on mesos. Comput. Sci. Res. Dev. 33(3), 305–316 (2018)

10. Yin, L., Luo, J., Luo, H.: Tasks scheduling and resource alloca-

tion in fog computing based on containers for smart manufac-

turing. IEEE Trans. Industr. Inf. 14(10), 4712–4721 (2018)

11. Xu, X., Yu, H., Pei, X.: A novel resource scheduling approach in

container based clouds. In: 2014 IEEE 17th International Con-

ference on Computational Science and Engineering, pp. 257–264.

IEEE (2014)

12. Han, P., Du, C., Chen, J., Ling, F., Du, X.: Cost and makespan

scheduling of workflows in clouds using list multiobjective

optimization technique. J. Syst. Arch. 112, 101837 (2021)

13. Zhou, X., Zhang, G., Sun, J., Zhou, J., Wei, T., Hu, S.: Mini-

mizing cost and makespan for workflow scheduling in cloud

using fuzzy dominance sort based heft. Future Gener. Comput.

Syst. 93, 278–289 (2019)

14. Kaur, N., Aulakh, T.S., Cheema, R.S.: Comparison of workflow

scheduling algorithms in cloud computing. Int. J. Adv. Compute.

Sci. Appl. 2(10), 81 (2011)

15. Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., Yang, Y.: A com-

promised-time-cost scheduling algorithm in swindew-c for

instance-intensive cost-constrained workflows on a cloud com-

puting platform. Int. J. High Perform. Comput. Appl. 24(4),
445–456 (2010)

16. Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented

hierarchical scheduling strategy in cloud workflow systems.

J. Supercomput. 63(1), 256–293 (2013)

17. Abrishami, S., Naghibzadeh, M.: Deadline-constrained workflow

scheduling in software as a service cloud. Sci. Iran. 19(3),
680–689 (2012)

18. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a

computer: an introduction to the design of warehouse-scale

machines. Synt. Lect. Comput. Architect. 8(3), 1–154 (2013)

19. Alshahrani, R., Peyravi, H.: Modeling and simulation of data

center networks. In: Proceedings of the 2nd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation,

pp. 75–82 (2014)

20. Alkhanak, E.N., Lee, S.P., Khan, S.U.R.: Cost-aware challenges

for workflow scheduling approaches in cloud computing envi-

ronments: taxonomy and opportunities. Future Gener. Comput.

Syst. 50, 3–21 (2015)

21. Zhang, S., Zhang,Y.,Gong,X.,Wang,R.: Freevm:A server release

algorithm in datacenter network. In: ICC 2021-IEEE International

Conference on Communications, pp. 1–6 (2021). IEEE

22. Verma, A., Ahuja, P., Neogi, A.: pmapper: power andmigration cost

aware application placement in virtualized systems. In: ACM/IFIP/

USENIX International Conference onDistributed Systems Platforms

and Open Distributed Processing, pp. 243–264. Springer (2008)

23. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual

machine consolidation in cloud data centers using aco meta-

heuristic. In: European Conference on Parallel Processing,

pp. 306–317. Springer (2014)

Cluster Computing

123

https://doi.org/10.1109/TCC.2021.3059096

24. Le, T.N., Sun, X., Chowdhury, M., Liu, Z.: Allox: compute

allocation in hybrid clusters. In: Proceedings of the Fifteenth

European Conference on Computer Systems, pp. 1–16 (2020)

25. Chaudhary, S., Ramjee, R., Sivathanu, M., Kwatra, N., Viswa-

natha, S.: Balancing efficiency and fairness in heterogeneous gpu

clusters for deep learning. In: Proceedings of the Fifteenth

European Conference on Computer Systems, pp. 1–16 (2020)

26. Joseph, C.T., Chandrasekaran, K., Cyriac, R.: Improving the

efficiency of genetic algorithm approach to virtual machine

allocation. In: 2014 International Conference on Computer and

Communication Technology (ICCCT), pp. 111–116 (2014). IEEE

27. Wu, Y., Tang, M., Fraser, W.: A simulated annealing algorithm

for energy efficient virtual machine placement. In: 2012 IEEE

International Conference on Systems, Man, and Cybernetics

(SMC), pp. 1245–1250. IEEE (2012)

28. Zhang, X., Lin, Q., Mao, W., Liu, S., Dou, Z., Liu, G.: Hybrid

particle swarm and grey wolf optimizer and its application to

clustering optimization. Appl. Soft Comput. 101, 107061 (2021)

29. Zhang, Y., Li, Y., Xu, K., Wang, D., Li, M., Cao, X., Liang, Q.: A

communication-aware container re-distribution approach for high

performance vnfs. In: 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pp. 1555–1564.

IEEE (2017)

30. Lv, L., Zhang, Y., Li, Y., Xu, K., Wang, D., Wang, W., Li, M.,

Cao, X., Liang, Q.: Communication-aware container placement

and reassignment in large-scale internet data centers. IEEE J.

Select. Areas Commun. 37(3), 540–555 (2019)

31. Canali, C., Chiaraviglio, L., Lancellotti, R., Shojafar, M.: Joint

minimization of the energy costs from computing, data trans-

mission, and migrations in cloud data centers. IEEE Trans. Green

Commun. Netw. 2(2), 580–595 (2018)

32. Ran, W., Yuchao, Z., Wendong, W., Ke, X., Laizhong, C.:

Algorithm of mixed traffic scheduling among data centers based

on prediction. J. Comput. Res. Dev. 58(6), 1307 (2021)

33. Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating

linux containers using criu. In: International Conference on High

Performance Computing, pp. 674–684. Springer (2016)

34. Rizvi, N., Dharavath, R., Edla, D.R.: Cost and makespan aware

workflow scheduling in iaas clouds using hybrid spider monkey

optimization. Simul. Model. Pract. Theory 110, 102328 (2021)

35. Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained

dynamic scheduling algorithm for scientific workflows in a cloud

environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2015)

36. Wu, K.: A tunable workflow scheduling algorithm based on

particle swarm optimization for cloud computing (2014)

37. Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J.: Cost-

efficient task scheduling for executing large programs in the

cloud. Parall. Comput. 39(4–5), 177–188 (2013)

38. Quan, Z., Wang, Z.-J., Ye, T., Guo, S.: Task scheduling for

energy consumption constrained parallel applications on hetero-

geneous computing systems. IEEE Trans. Parall. Distrib. Syst.

31(5), 1165–1182 (2019)

39. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune,

E., Wilkes, J.: Large-scale cluster management at google with

borg. In: Proceedings of the Tenth European Conference on

Computer Systems, pp. 1–17 (2015)

40. Burns, B., Beda, J., Hightower, K.: Kubernetes: up and Running:

Dive Into the Future of Infrastructure. O’Reilly Media, ??? (2019)

41. Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., Rao, S.:

Medea: scheduling of long running applications in shared pro-

duction clusters. In: Proceedings of the Thirteenth EuroSys

Conference, pp. 1–13 (2018)

42. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar,

M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S.: Apache

hadoop yarn: yet another resource negotiator. In: Proceedings of the

4th Annual Symposium on Cloud Computing, pp. 1–16 (2013)

43. Al-Moalmi, A., Luo, J., Salah, A., Li, K.: Optimal virtual

machine placement based on grey wolf optimization. Electronics

8(3), 283 (2019)

44. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow

scheduling of the energy consumption and reliability in hetero-

geneous computing systems. Inf. Sci. 379, 241–256 (2017)

45. Khalilzad, N., Faragardi, H.R., Nolte, T.: Towards energy-aware

placement of real-time virtual machines in a cloud data center. In:

2015 IEEE 17th International Conference on High Performance

Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE

12th International Conference on Embedded Software and Sys-

tems, pp. 1657–1662 (2015). IEEE

46. Marotta, A., Avallone, S.: A simulated annealing based approach

for power efficient virtual machines consolidation. In: 2015 IEEE

8th International Conference on Cloud Computing, pp. 445–452

(2015). IEEE

47. Zhong, Z., Buyya, R.: A cost-efficient container orchestration

strategy in kubernetes-based cloud computing infrastructures

with heterogeneous resources. ACM Trans. Internet Technol.

(TOIT) 20(2), 1–24 (2020)

48. Curino, C., Krishnan, S., Karanasos, K., Rao, S., Fumarola, G.M.,

Huang, B., Chaliparambil, K., Suresh, A., Chen, Y., Heddaya, S.:

Hydra: a federated resource manager for data-center scale ana-

lytics. In: 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19), pp. 177–192 (2019)

49. Liu, X., Cheng, B., Wang, S.: Availability-aware and energy-

efficient virtual cluster allocation based on multi-objective opti-

mization in cloud datacenters. IEEE Trans. Netw. Serv. Manag.

17(2), 972–985 (2020)

50. Li, C., Wang, Y., Tang, H., Luo, Y.: Dynamic multi-objective

optimized replica placement and migration strategies for saas

applications in edge cloud. Future Gener. Comput. Syst. 100,
921–937 (2019)

51. Ji, J.-Y., Wong, M.L.: An improved dynamic multi-objective

optimization approach for nonlinear equation systems. Inf. Sci.

576, 204–227 (2021)

52. Patel, Y.S., Malwi, Z., Nighojkar, A., Misra, R.: Truthful online

double auction based dynamic resource provisioning for multi-

objective trade-offs in iaas clouds. Clust. Comput. 24(3),
1855–1879 (2021)

53. Devi, K.L., Valli, S.: Multi-objective heuristics algorithm for

dynamic resource scheduling in the cloud computing environ-

ment. J. Supercomput. 77(8), 8252–8280 (2021)

54. Liu, Q., Yu, Z.: The elasticity and plasticity in semi-containerized

co-locating cloud workload: a view from alibaba trace. In: Pro-

ceedings of the ACM Symposium on Cloud Computing,

pp. 347–360 (2018)

55. Hansen, P., Mladenović, N., Moreno Perez, J.A.: Variable

neighbourhood search: methods and applications. 4OR 6(4),

319–360 (2008)

56. Lusa, A., Potts, C.N.: A variable neighbourhood search algorithm

for the constrained task allocation problem. J. Oper. Res. Soc.

59(6), 812–822 (2008)

57. Kardani-Moghaddam, S., Khodadadi, F., Entezari-Maleki, R.,

Movaghar, A.: A hybrid genetic algorithm and variable neigh-

borhood search for task scheduling problem in grid environment.

Proc. Eng. 29, 3808–3814 (2012)

58. Google trace. https://github.com/google/cluster-data (2011)

59. Tripathi, A.K., Sharma, K., Bala, M.: A novel clustering method

using enhanced grey wolf optimizer and mapreduce. Big Data

Res. 14, 93–100 (2018)

Cluster Computing

123

https://github.com/google/cluster-data

60. Tariq, R., Aadil, F., Malik, M.F., Ejaz, S., Khan, M.U., Khan,

M.F.: Directed acyclic graph based task scheduling algorithm for

heterogeneous systems. In: Proceedings of SAI Intelligent Sys-

tems Conference, pp. 936–947. Springer (2018)

61. Google trace. https://github.com/alibaba/clusterdata (2017)

62. Fatima, A., Javaid, N., Anjum Butt, A., Sultana, T., Hussain, W.,

Bilal, M., Hashmi, M.A.U.R., Akbar, M., Ilahi, M.: An enhanced

multi-objective gray wolf optimization for virtual machine

placement in cloud data centers. Electronics 8(2), 218 (2019)

63. Singh, P., Rizvi, M.A.: Virtual machine selection strategy based

on grey wolf optimizer in cloud environment: a study. In: 2018

8th International Conference on Communication Systems and

Network Technologies (CSNT), pp. 108–112. IEEE (2018)

64. Kaaouache, M.A., Bouamama, S.: An energy-efficient vm

placement method for cloud data centers using a hybrid genetic

algorithm. J. Syst. Inf. Technol. 20, 430–445 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Shiyan Zhang received her M.S.

degree from the Nanjing

University of Posts and

Telecommunications, Nanjing,

China, in 2015. She is currently

pursuing a Ph.D. degree at the

Beijing University of Posts and

Telecommunications (BUPT),

Beijing, China. Her research

interests mainly include time

sensitive networks, data center

networks, and edge computing.

Yuchao Zhang received her

Ph.D. degree from the Com-

puter Science Department of

Tsinghua University in 2017. In

2012, she received her B.S.

degree in computer science and

technology from Jilin Univer-

sity. Her research interests

include largescale datacenter

networks, content delivery net-

works, data-driven networks,

and edge computing. She is

currently with the Beijing

University of Posts and

Telecommunications as an

associate professor.

Ran Wang received her B.E.

degree from the software engi-

neering department, Hunan

University, Changsha, China, in

2018. She is currently a master

student in the software engi-

neering department of Beijing

University of Posts and

Telecommunications, Beijing,

China. Her current research

interests include traffic engi-

neering (TE) and datacenter

resource management.

Xiangyang Gong received his

B.E. and M.E. degrees from

Xi’an Jiaotong University,

China, in 1992 and 1995,

respectively, and a Ph.D. degree

from the Beijing University of

Posts and Telecommunications

in 2012. He is now a professor

at Beijing University of Posts

and Telecommunications. His

research interests include IP

QoS, video communications,

novel network architecture,

artificial intelligence, and

mobile internet.

Cluster Computing

123

https://github.com/alibaba/clusterdata

	MO-FreeVM: multi-objective server release algorithm for cluster resource management
	Abstract
	Introduction
	Related work
	Single objective optimization
	VM placement and migration
	Optimizing costs and makespan
	Cluster management

	Problem formalization
	Problem definition
	Task model
	Cloud resource manage model

	Total cost
	PM cost
	Migrate cost
	Balance cost

	Time satisfaction function
	Multi-objective model
	Constraints

	MO-FreeVM
	System architecture
	First placement
	Variable neighborhood searching
	PM start-stop
	The proof of closest lower bound for the number of active PMs

	Evaluation
	Experimental set-up
	MO_STVNS over existing solutions
	GWO algorithm parameter setting
	SA algorithm parameter setting
	GA algorithm parameter setting

	Experimental results and analysis

	Conclusion
	Author contributions
	Code availability
	References

