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Abstract— With the ever-increasing deployment of 5G and
IoT, the number of end-hosts/terminals is increasing rapidly, so
that routers have to cache more and more forwarding entries
to guarantee communication reachability of these terminals,
which makes Ternary Content Addressable Memory (TCAM)-
based routers keep expanding resource requirements. However,
the design and implementation of large-capacity TCAM-based
routers are faced with such challenges: difficult circuit design,
high production cost and energy consumption, thereby posing
an urgent requirement on a lightweight TCAM that can still
maintain those massive communication connections.

In this paper, we aim to design a lightweight router with small
storage requirement while still retaining the original commu-
nication connection performance, which is not straightforward
due to the following two challenges: First, under the condition of
massive sequential flow data, it’s difficult to accurately and timely
select the entries to cache for a small capacity TCAM. Second,
given the strict prefix matching principle, how to efficiently insert
the selected entries into TCAM is also challenging. To address
these problems, we propose A&B: an AI-based Routing entry
prediction strategy (AIR) and a Block-based entry Insertion
Tactic (BIT). AIR can precisely select entries by conducting
accurate entry predictions, which converts dynamic flow-based
prediction into stable and parallelizable entry-based prediction
by decoupling spatio-temporal characteristics. BIT optimizes
entry insertion by isolating TCAM into several blocks, thus
eliminating the time-consuming entry movements. The exper-
iment results based on real backbone traffic show that our
lightweight A&B achieves comparable performance compared
to the traditional schemes by using only 1/8 TCAM storage.
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I. INTRODUCTION

Ternary Content Addressable Memory (TCAM) is an es-
sential unit of routers for storing and querying routing entries,
which assists in making fast forwarding decision based on IP
address of packet header. However, the capacity of TCAM
becomes one of the bottlenecks to accommodate the rapid
growth in physical terminals that access to the Internet accel-
erated by 5G and the Internet of Things (IoT).

The growth of the number of entries is raising high re-
quirements for TCAM both on capacity and efficiency [1].
The current TCAM-based commercial core routers have to
scale TCAM capacity to keep up with the growth of entries,
while the expansion from 512,000 to 900,0001 will naturally
result in high production costs and electricity consumption
[2]. Moreover, the large-capacity TCAM also involves circuit
design constraints [3]. Therefore, crudely expanding the ca-
pacity of TCAM in strawman way is not a sustainable solution
to satisfy future network demands [4], [5], and it is urgent to
design a kind of small-capacity TCAM-based routers while
maintaining the original packet forwarding performance.

To design such an efficient lightweight small-capacity
TCAM is not straightforward which is faces with two fun-
damental challenges: Entry selection and Entry insertion.

• Entry selection: In order to have a higher query hit rate,
which entries should be stored in TCAM with limited
capacity? The traditional “insert if missed” update strat-
egy results in highly frequent replacement under small-
capacity TCAM, which would severely decrease query
efficiency and is therefore impractical in core routers [6].
Leveraging prediction to make replacement decisions is a
potential approach, which would face two challenges of
accuracy and efficiency. (1) The prediction accuracy de-
termines the coverage ability of packet queries of TCAM
with limited capacity, and then how to accurately predict
each future flow based on complicated and uncertain
aggregated time-sequential flows data is a challenge. (2)
As the network link rate grows rapidly from 100Mbps
to 100Gbps [7], routers must be able to achieve the
same line-speed in packet lookup and forwarding. While
the existing prediction algorithms on individual entries
cannot satisfy such timeliness requirement [8], [9]. Then,
how to linearize the prediction algorithm is another
challenge.

1The Cisco Catalyst 6500 series, such as WS-SUP720-3BXL, VS-S720-
10G-3CXL and RSP720-3CXL-GEthe, the default IPv4 TCAM size is
512,000 and the maximum value is 1,000,000.
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• Entry insertion: How to insert those selected entries into
TCAM efficiently? The longest prefix matching principle
generates dependencies between entries with the same
prefix, which makes entries have to keep the relative pre-
post relationship between the dependent entry set when
stored in TCAM. Therefore, the update of TCAM is a
complex process. When inserting one entry, its related
dependent entries also need to be inserted jointly, which
may require the entries stored in TCAM to be moved sev-
eral times to free up a proper space for the corresponding
entries [10], [6]. It is a challenge to optimize the process
of entry insertion of TCAM and make it more efficient.

To address forementioned challenges, in this paper, we
present an efficient lightweight TCAM-based router frame-
work, A&B, which consists of two components: an Artifi-
cial Intelligence (AI)-based Routing entry prediction strategy
(AIR) and a Block-based routing entry Insertion Tactic (BIT).

• AIR decouples the future flows prediction based on com-
plicated and uncertain aggregated time-sequential flows
data to a denumerable individual routing entry prediction
issue, and on that basis, parallelizes the LSTM-based
prediction calculation. Such decoupling and parallelizing
enhance both accuracy and efficiency of the prediction
model.

• BIT, based on the traffic skewed distribution and prob-
ability segmentation, extremely loosens the strict re-
strictions on the relative pre-post relationship of the
dependent entry set stored in TCAM.

We have implemented a prototype of A&B and evaluated
it using real traffic from a backbone network [11]. The
experiment results show that A&B achieves similar forwarding
performance with only 1/8 capacity or even less. We also
show that A&B can effectively handle different Wide Area
Networks (WANs) with various traffic characteristics.

Our contributions are summarized as follows:

• Characterizing the backbone network’s workload from
the perspective of router traffic to motivate the require-
ment of a lightweight TCAM entry replacement scheme.
(§III)

• Presenting AIR, an AI-based TCAM entry prediction
scheme that achieves the identical forwarding perfor-
mance by decoupling entry aggregations and parallel
execution. (§IV)

• Proposing BIT, a block-based TCAM entry insertion tac-
tic that successfully loosens the strict storage restrictions
of dependent entries stored in TCAM, and thus enhances
the update efficiency. (§V)

• Demonstrating the practical benefits of A&B by a real-
world backbone network playback. (§VI and §VII)

This paper is organized as follows. We review related
work and motivations in §II. In §III, we describe the overall
structure of A&B. In §IV and §V, we detailedly introduce the
two modules of A&B, AIR and BIT, respectively. We then
conduct extensive evaluations and show the results in §VI and
§VII. We conclude the paper in §VIII.

II. RELATED WORK AND MOTIVATION

In this section, we review related works of routing entry
lookup and TCAM, and present the motivation of our A&B
design.

A. Related Work

1) Routing Table Lookup: Traditional routing entry
lookup methods can be classified into two categories:
software-based searching algorithms and hardware-based
match-action mechanism.

The software-based entry lookup is a kind of classic
approach, which mainly stores prefixes in trie structure in
binary way [12], [13], [14], [15], [16], [17]. Stefan et al.
used a single node to replace all previous complete subtrees
based on the level-compressed tried to further reducing the
forwarding table space [16]. SAIL divided routing entries
into three levels, level 16, 24 and 32, which can achieve
a satisfactory lookup performance due to less level visiting
requirement [13]. Another alternative way is based on the hash
table [18], [19], [20], [21], [22]. Waldvogel et al. organized
the hash table according to the prefix length and stored the
routing prefixes in different linear hash tables with different
lengths [18]. CoLT exhibited a great memory efficiency and
can launch parallel lookup over tables during every lookup
due to its hash tables permit multiple possible buckets to hold
each prefix [21]. Additionally, some works used bloom filter to
perform the entry lookup task [23], [24], [25], [26], [27], [28].
However, time-varying forwarding table needs to frequently
reselect hash functions, which will reduce hash performance
and increase update difficulty.

As the link rate of the backbone increases, the traditional
CPU-based software-based lookup algorithms have been un-
able to meet the lookup demands of high-speed communica-
tion systems. Then Graphics Processing Unit (GPU) is used in
some works to assist in accelerating the entry lookup due to its
excellent parallel capabilities [29], [30], [31]. Younghwan et
al. employed integrated GPU in Accelerated Processing Unit
(APU) platform to achieve multi-10 Gbps performance for
many compute/memory-intensive algorithms [31]. The above
software-based lookup algorithms are highly flexible, and the
performance can be enhanced by the parallel processing capa-
bility of the GPU, however, they still suffer from the lookup
speed limitation essentially due to the inherent characteristics.
Usually, Field Programmable Gate Array (FPGA)-based entry
lookup strategy needs to address two main issues: how to
store all routing entries information on the chip and how
to construct pipeline stages [32], [33], [34]. Some works
proposed to compact data structure and store a part of the data
by using hashing [35], [36], [37], [38], and some strategies
proposed to adjust the trie structure by rotating some branches
to balance stage size [39], [40], [41]. A complex search
algorithm will increase the logic complexity of the FPGA,
resulting in clock frequency trade-offs.

2) Ternary Content Addressable Memory: TCAM is a
three-state content addressing memory that can provide 0, 1,
and x (ignored) matches and can match of all routing entries
according to the entered key value in one clock cycle, then
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Fig. 1: TCAM lookup structure

it returns the address of the matched entry. When there are
multiple matches caused by the x state, it will by default hit
the entry with lowest stored address of all matched entries,
i.e., the entry stored at lower addresses in TCAM has higher
priority.

Given the three-state characteristic that is suitable for the
longest prefix matching, TCAM has been widely used for rule-
based entry lookup and packet classification [42], [43], [44],
[45], whose structure of lookup is shown in Figure 1.

Thus, the storage of entries in TCAM has to follow the
principle of relative pre-post location relationship, which
means that for entries with the same prefix, all entries must
be stored in the lower address location than those entries with
shorter masks. As shown in Figure 2, 102.1.23.24/32
is stored lower than 102.1.23.0/24 to ensure the packet
with destination IP address 102.1.23.2 to be forwarded to
correct port eth0, otherwise, the packet would be forwarded
to the wrong port eth4. It should be noted that the mask
length represents entries’ priority. Hence, some entries stored
in TCAM may have to be moved to free up a suitable location
for the newly inserted entry, even if there are some free spaces
with high address. As an analysis, inserting a single entry for a
1K entry-set requires a maximum of 466 entry-moves [6]. To
solve this problem, RuleTris reduced the average moves per
entry insertion to about 10 times by the designed algorithm,
however, it is time consuming and causes unacceptable latency
in calculating the movement scheme [10]. In addition, a more
complicated issue exists, e.g., if only 102.1.23.0/24 is
stored in TCAM according to the cache rules, then those
packets which should matched to like 102.1.23.1/32,
102.1.23.16/28, etc., will also be forwarded incorrectly.
Due to the entry dependencies, when entry e should be
inserted into TCAM, theoretically all dependent entries with
mask are longer than e must also be inserted into TCAM
jointly to guarantee the correctness of the matching result,
even if the caching policy does not require these dependent
entries. Especially, for TCAM, the move operations and query
operations can only be performed serially, so updating the
TCAM may significantly decrease the query performance.

3) TCAM Optimizations: To address the issue that
TCAM’s capacity can hardly meet the growth of routing
entries, the series of Rasor-based works [46], [47], [48] are
pursued from the perspective of compressing entry table,
but minimizing the number of entries for a single switch is
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Fig. 2: Dependency of entries

computationally difficult. With this, some studies investigated
how to efficiently and accurately decompose a large table
stored at network ingress into several smaller sub-tables and
distribute them across network switches [49]. Using TCAM as
a cache can also alleviate this problem from another perspec-
tive, which, however, introduces hit rate, content updates, and
other challenges [50]. Sheu et al. leveraged a sophisticated
algorithm according to temporal and spatial traffic localities
to select entries for better TCAM hit-rate [51]. It requires
multiple cumulative calculations from entry nodes to the root
node in the entry dependency directed acyclic graph (DAG) to
obtains the most appropriate cached entry-set in each update
of TCAM. However, it is difficult to provide timely cached
results for the lightweight TCAM scenario of this paper.
T-cache crafted dependency-free rules in cache update and
used statistical-based strategy to select cached rules [52].
CacheFlow divided all entries into several subsets according
to dependencies to improve TCAM efficiency [53]. However,
such proactive schemes are limited in the ability to generate
entries dynamically based on the evolving network. Inspired
by the advantages of prior studies, in this paper, we propose
an AI-based entry selection strategy for TCAM caching that
can still employ the existing schemes to alleviate the effect of
entry dependencies from entry table perspective.

Several researches are conducted from the perspective of
TCAM updates. Bohan et al. designed a TCAM update opti-
mization framework that can guarantee consistent forwarding
during the entire update process [54] and Ying et al. proposed
a batch update algorithm which collectively evaluates and
optimizes the TCAM placement for whole batches throughout
[55]. Zixuan et al. proposed a strategy that comprehensively
considers hit rate and update efficiency, and the algorithm can
improve update efficiency by sacrificing hit rate [56]. Kun et
al. devoted to avoiding unnecessary entry moves when insert-
ing entries through complex algorithms which computes over
the entire TCAM [57], but there is still room for achieving
the ideal TCAM entry move reduction. Shah et al. designed a
TCAM management scheme based on prefix-length of entries
[58], but the skewed distribution characteristic of traffic is not
considered. As such, we propose a block-based scheme for
TCAM management, which can eliminate the effect caused
by the dependency of entries when inserting new entries and
avoid movements of the entries stored in TCAM, thereby
eventually improving the update efficiency of TCAM.

4) AI-based Methods: In recent years, more and more
researchers focusing on AI have proposed good network
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Fig. 3: A&B architecture

TABLE I: Proportion of each prefix-length entries

Value

Proportion Length
8-15 16 17 18 19 20 21 22 23 24 25-32

Min 0.038 0.068 0.041 0.015 0.034 0.050 0.060 0.068 0.096 0.500 0.004
Average 0.040 0.070 0.043 0.016 0.037 0.051 0.062 0.070 0.098 0.507 0.006

Max 0.042 0.072 0.044 0.018 0.038 0.053 0.065 0.074 0.101 0.513 0.009

models which are widely used in various fields, such as
analysing images, summarizing documents, speech recogni-
tion, etc. Shunsuke et al. designed a forwarding information
base (FIB) storage structure based on learned index, which is
less than half of an existing trie-based FIB while it achieves
the computation speed nearly equal to the trie-based FIB [59].
NeuroCuts [60] and NuevoMatch [61] proposed the AI-based
method to construct a decision tree for fast packet classifica-
tion. However, the essence of these studies is still to utilize
the software-based tire structure to perform the lookup. He et
al. proposed a meta-learning scheme to improve the accuracy
by predicting different categories of traffic separately and then
integrating results into a overall traffic prediction result [62].
It allows to train an individual predictor to adapt to a new
category of traffic, but it is only applicable to traffic granularity
prediction problems. Moreover, some studies applied AI to
deal with caching strategy issues. Zhang et al. introduced an
additional attribute, i.e., the spatial feature of short videos,
to predict popularity through a graph convolutional neural
network model [63]. DeepCache architecture proposed in [8]
accounts for predicted information of objects to make smart
caching decisions, which, however, is hard to cope with pre-
diction tasks with large-scale objects like routing entries. The
FreeCache proposed in [9] tackled the large-scale prediction
objects problem by indexing and mapping, but it will introduce
additional overhead in each prediction. In addition, the above
scheme needs to maintain the temporal relationship between
objects, which makes it difficult to parallelize the prediction
process. Then, how to ensure the timeliness of prediction
results becomes a challenge. Therefore, we proposed a paral-
lelizable entry prediction algorithm with temporal and spatial
characteristics decoupling.

B. Motivations

We characterize the workload of a core router located in
New York backbone network [11], and disclose the oppor-
tunities of designing a decoupled and parallelized AI-based
prediction solution and an effective entry insertion tactic.

• Traffic skew distribution. The traffic presents a Zipf-
like skewed distribution, i.e., a small number of flows
are contributing to the majority of traffic, even 5% flows
can contribute more than 90% traffic [11], [64]. This
natural distribution property provides an opportunity to
leverage a small capacity TCAM while maintaining the
high lookup performance by predicting hot entries.

• Stable and independent routing entries. Numerous
flows and their dependence present the challenges to
prediction algorithm. However, the number of entries
of a RIB is relatively stable, and more importantly, the
access frequency of entry is independent of each other.
It is artful to switch the flow prediction problem into the
entry prediction problem, and decouple the relationship
between entries, which provides feasibility for prediction
in routing lookup scenarios.

• Isolation of the same prefix-length entries. To satisfy
entries’ pre-post location constraint introduced by their
dependencies, the update process of TCAM may involve
complicated entry movements, which is computationally
intensive and time-consuming. Then, trying to achieve
lightweight TCAM through delicate replacement mecha-
nism faces entry insertion challenge. Fortunately, entries
with the same prefix length are isolated from each
other, i.e., the above mentioned constraint is non-existent
between them. Besides, the proportion of the number of
each prefix-length accessed entries over a time interval
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is relatively stable2, as shown in Table I, which provides
a new idea to accelerate the entry update of TCAM.

The aforementioned observations and analyses co-motivate
the desirability of customizing the AI and block-based ap-
proach to realize a lightweight TCAM.

III. A&B SYSTEM OVERVIEW

In this section, we first describe the sketch of A&B briefly,
and then present the framework and core-structure of two main
modules, AIR and BIT, respectively.

A. Sketch of A&B

The overall architecture of A&B is shown in the Figure
3, which concentrates on the TCAM-based entry lookup part.
It consists of two main core modules, AIR and BIT. AIR is
mainly related to the prediction of TCAM storage elements
by traffics, while BIT is concerned with updating the TCAM
by the prediction results in an efficient way.

B. Framework of AIR

The overall structure of AIR is shown in the bottom rect-
angle of Figure 3, which can be outlined as three workflows.

1) Entry Decoupling: The original time-series data of
flows in router is variable and extra-long, which is
unpractical for prediction. Therefore, it is decoupled into
entries access frequency data in the sub-module marked
with a purple dashed circle in Figure 3. The consecutive
historical access frequency data of the each entry still
maintaining the time-dimension characteristics, which
will be used as input to the subsequent module.

2) Parallel Prediction: The access frequency of each entry
of the next period can be predicted by the AI model,
which is the basis for determining whether the entry is
hot or not, i.e., whether it should be inserted into the
TCAM. The decoupling of first stage individualizes each
entry computation and makes the parallelized prediction
model practical, which guarantees the timeliness perfor-
mance of the whole algorithm. This phase is marked
with an orange dashed circle in Figure 3.

3) Entry Classification: On the basis of the predicted
next-period access frequency, all entries can be divided
into two categories depending on the set threshold TS,
i.e., entries that are accessed less frequently than the
threshold are classified as non-hot, otherwise, as hot,
which will be inserted into TCAM. This phase is marked
with a red dashed circle in Figure 3.

The skewed distribution of traffic makes it valuable to
optimize TCAM utilizing prediction. Firstly, AIR converts
a flow prediction issue into an entry prediction task, thus
enhancing the accuracy of prediction. Secondly, due to the
requirements of linear speed processing in network scenarios,
AIR tactfully decouples entries, which not only parallelizes
the prediction process so that the prediction results can fulfill

2The number proportion of each different prefix-lengths accessed entries
in per 106 queries, and the min, max and average values are calculated from
more than 10 continuous periods.

the network scenarios, but also enables prediction granularity
and interval to be more flexible. Moreover, the threshold TS
can be tuned according to the network status, which can
enables AIR to adapt network dynamic variations better. The
details are given in §IV.

After our proposed entry decoupling, it is possible to use
statistical methods to accomplish the functional requirements.
However, statistical methods like moving average algorithms
perform satisfactory on data with relatively stable trends.
However, based on the statistics of real traffic, there are a
large proportion of entries with relatively large fluctuations in
hotness, in which case the learning model-based will perform
better. Therefore, in order to accurately predict the hotness of
all entries, we decided to use the LSTM model.

C. Core-idea of BIT

The core idea of BIT is shown in Figure 3. There are
dependent relationships between routing entries with the same
prefix but different mask-lengths, which is the main issue that
leading to the complicated content updates of TCAM. In a
nutshell, BIT divides all routing entries into different groups
based on the mask length and virtually isolates TCAM into
different blocks. According to the mask length of the entry,
the block stored is specified, where the longer the mask length
is, the lower the address of the corresponding block in TCAM,
which is determined by the query characteristic of TCAM.

In this way, the complicated influence of dependent rela-
tionships on TCAM update can be eliminated, making the
update process more efficient. The details are demonstrated
in §V.

D. Explanation

A&B proposed in this paper mainly focuses on scaling
down the required TCAM resources. The traditional TCAM
update methods require highly frequent entry replacement to
update such small-scale TCAM, which are accompanied by
a significant amount of computation and execution of the
corresponding dependent entries movements scheme, i.e., the
traditional methods are hardly applied directly in the small-
scale TCAM scenario. Given the skewed distribution of traffic,
AIR selected high-frequency entries accurately for updating
TCAM based on prediction results of the LSTM-based model.
Hence, AIR minimizes the number of replacements of entries
while ensuring the TCAM hit rate compared with the tradi-
tional method. In the complexity of calculation and execution
of dependent entries movements scheme, BIT eliminates such
operations that are required the traditional method.

IV. AI-BASED ENTRY PREDICTION

In this section, we describe AIR in detail, including pre-
diction algorithm and some optimization schemes. Table II
summarizes the common notations and parameters in the
description of AIR.
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Fig. 4: AIR Parallelization

TABLE II: Notation Description of AIR

Notation Description

ei entry i
∆t time interval in the unit of packets.
IL the length of the statistics period in the unit of packets.
TS classification threshold value for hot entries
DS disjoint group of entries

A. Design Principles

The design of AIR is driven by the following three princi-
ples:

• Proper Prediction Granularity.
Prediction based on flow level is challenging, and such
a massive number of flows would result in huge state
space. AIR takes a new perspective and focuses on
corresponding entries of aggregated flows. The number
of entries is relatively stable, thus its state space is much
smaller than that of flows, which significantly reduces the
computing overhead. In addition, the results of prediction
of entries will be more accurate.

• Data Decoupling.
The dynamic of traffics makes the selection of model
inputs very difficult. If the input sequence is selected
at a fixed time interval, the number of selected flows
would be ever-changing, which makes the prediction
algorithm invalid. If the input sequence is selected in
a fixed-length way, it is necessary to make real-time ad-
justments based on traffic status to retain characteristics.
Additionally, it requires tens of thousands or even longer
sequence lengths to capture the data characteristics. The
dynamically variable and ultra-long traffic sequence data
is quite challenging for prediction model. In AIR, we
calculate each entry access frequency independently, thus
decoupling the sequence dependencies. In this way, the
subsequent prediction module can parallelly predict the
next period access frequencies of the entries based on the
historical data.

• Dynamic Prediction Interval.
When the network traffic is relatively stable, frequent
prediction operations are not necessary since the hot
entries are already stored in the TCAM. When the
network fluctuates, however, it is necessary to increase

the prediction frequency to update the TCAM in time. In
AIR, this matter is tackled by using dynamic prediction
intervals, which can be set and adjusted flexibly accord-
ing to the traffic status.

B. AIR Methodology

1) Entry Decoupling: As described in above sections,
the issue of flow prediction based on the aggregated time-
sequential traffic data can be formulated as follows.

(P (SIP ,DIP )
ei,n , P

(SIP ,DIP )
ej ,n+1 , P

(SIP ,DIP )
ek,n+2 , ...), (1)

where P
(SIP ,DIP )
ei,n denotes that the coming flow at time t is

packet ei with source IP SIP and destination IP DIP . Such
traffic is the aggregated sequential data from all the flows
with different sources and destinations, making the prediction
extremely difficult.

In AIR, we try to address this problem from a different
perspective by decoupling each flow from the aggregated
traffic. We set a periodic interval ∆t, and transform the origin
flow sequence data into entry accessed frequency, and for each
entry ei, the frequency prediction problem can be denoted as
follows:

xei
t+(n+1)∗∆t

= f(xei
t , xei

t+∆t
, ..., xei

t+n∗∆t
), (2)

where xei
t+∆t

means that at time interval t to t+ ∆t, entry ei

appears x times.
It should be noted that the interval ∆t is strategically set to

be dynamically adjusted, which is lower for fluctuating traffic
than for stable traffic. Moreover, the required number of period
of historical data to predict next period frequency is different,
which will be less for stable traffic than for fluctuating traffic.
In practice, the appropriate number of data history can be
selected by refereeing the prediction accuracy in the offline
training process of the model.

2) Parallelization: Although the flow sequential data has
been decoupled into entry access frequency data, the cen-
tralized prediction of a large number of entries makes the
timeliness of the prediction results not guaranteed. As shown
in the Original Method of Fig. 4(a), assuming that the time to
predict an entry is Pt, then the entry prediction results delay
in the worst case is N ∗ Pt, where N is the total number of



7

entries to be predicted. The decoupled entries are independent
from each other, then it is not necessary to put all the entry
predictions in one time period. Therefore, we design a parallel
prediction scheme.

AIR divides all entries of the RIB into disjoint groups (DG)
and sets different packet count-based statistic start flags for
each DG. To ensure consistency in the statistical period of
each entry, each entry only belongs to a single DG. The
best case is to averagely divide the entries of the same access
frequency range into each DG based on the historical data,
which can ensure that all DGs can avoid an extreme situation,
such as the entries within a DG that all with high access
frequency. One should note that the entries in the same DG
have no dependencies except that they have the same start/end
triggers of the statistics period, so the division of entries can
also be adjusted flexibly according to the changes of network
flows. As shown in Parallel Method in Fig. 4(a), the globally
defined packet counter is maintained by the router. When each
entry is accessed, its corresponding access frequency counter
is added by 1. Since each DG has different start flag, assuming
that DG1 starts its statistics from the ith packet and DG2

from the jth packet. When the (i+n)th packet arrives at the
router, where n is period-length IL, the next period frequency
of entries of DG1 will be predicted based on the access
frequency at that interval (i.e., the latest statistics period) and
historical data, and update the TCAM caching according to
the prediction results. Then, a new statistics period will be
started when the (i + n + 1)th packet arrives. Similarly, the
entries of DG2 are triggered to be predicted at the arrival of
(j+n)th packet, and its new statistics period will be started at
the arrival of (j+n+1)th packet. Lastly, the worst prediction
result delay is (N/d) ∗ Pt, where d is the number of DG.

The detail architecture of parallelization is shown in the
Figure 4(b). The access frequency data of the entries obtained
from the forwarding module. Since the independent of each
entry, the counting phase does not need to consider the
grouping restriction and directly performs a +1 operation on
the counter of the corresponding access frequency. A series of
operations will be triggered at the end of each statistical period
of each DG. The latest statistical results of this DG from the
statistical array combined with corresponding historical access
frequency data from historical data array will be input to
the prediction module, which will process predict calculation
according to this data. And the latest data will also be stored
in the historical data array, then the corresponding value of
this DG in the statistical array will be cleared to start the next
period statistics.

3) Algorithm Design: The pseudo code of AIR is shown
in Algorithm 1, and the function is described in detail. The
processes are as follows: (1) Triggering group prediction by
traffic measuring. (2) Obtaining decoupled entry data based on
traffic data. (3) Predicting entry frequency based on historical
data. (4) Getting hot entries from prediction results and
threshold values TS. (5) Updating the hot entries into TCAM.

a) Input and Output: The historical access frequency
data for each entry is a one-dimensional vector, e.g., ~N =
(n1, n2, ..., ni)

T , where the value with the smallest index
represents the access frequency of the latest ∆t. The vector

3

Fig. 5: Prediction model structure

Algorithm 1: AIR Algorithm

1 entry statistic(): return DGi that should be predicted;
2 decouple entry(i): return decoupled entries of DGi;
3 get hisdata(e): get entry e historical data array;
4 LSTM predict(datae): predict e frequency;
5 entry cla(TS,DGi data): return hot entries of DGi;

Input: trigger signal
Output: a new prediction thread

6 while TRUE do
7 group i = entry statistic();
8 if group i != None then
9 New Thread: Pre_Fuc(group_i);

10 Function Pre_Fuc(group i):
11 for e in group i do
12 ~N = get hisdata(e);
13 Voutput = LSTM predict( ~N );
14 fre data.append(Voutput);

15 hot entries = entry cla(TS, fre data);
16 update TCAM(hot entries);

is segmented by a sliding window with size n and step 1 as
the input ~Ninput of the prediction model. n is the required
number of historical periods for prediction. And the output
Voutput of the prediction module is an integer that indicates
the predicted access frequency of the entry in the next period.
The prediction results of all entries can be used as reference
for TCAM update decisions.

b) Model Structure and Parameter Settings: In the
prediction module of AIR, LSTM-based model is used to
process the prediction about time series characteristics. The
overall model structure shown in Figure 5 which consists
of the following parts: two LSTM(units=128) layers, with
a Batchnormalization layer added in the middle to avoid
the gradient disappearance problem and to speed up the
model training, then a Dropout layer added to reduce the
occurrence of overfitting, finally a value output through a
Full Connection layer whose activation function is the relu
function. Moreover, the Adam optimizer and the mean square
error loss function are used for the model.

The prediction model will be used offline after it converges,
which can still be trained periodically or when the TCAM hit
rate decreases based on the latest entries access frequency



8

Algorithm 2: Predict With Filter
Input: identifier array f
Output: next frequency array n f

1 for i in N do
2 if f [i] == 0 then
3 n f [i] = 0;
4 else
5 n f [i] = predict(data[i]);

6 return n f ;

Algorithm 3: Identifier Update
Input: identifier array f and current frequency array c f
Output: f

1 for i in N do
2 // f [i] = f [i] << 1;
3 if c f [i]! = 0 then
4 //revise the bit of identifier of latest period as 1

f [i] = f [i] || 0x01;

5 return f ;

data.
4) Optimization: Current commercial switches or routers

are configured with measurement and analysis tools, which
are linear processes. However, a great number of prediction
calculations will consume computational resources and cause
latency. An inefficient strawman way is to predict all entries
of a DG after each statistical period. Then the prediction is
optimized from the spatial aspect on the basis of paralleliza-
tion to alleviate this issue. Based on observations, it can be
confirmed with high probability that some entries will present
very low activity and will not even be accessed in the future,
then the computational resources occupied for these entries
are actually wasted. Hence, we attach constraints to filter out
the entries that are not worthy to predict in order to minimize
the computational burden. In addition, the prediction process
involves saving historical access data of all entries, which will
occupy a large amount of storage memory. We designed an
efficient data storage structure and strategy to optimize the
data storage of AIR. The specific design schemes will be
presented in detail below.

a) Entry Filter: As described above, it is not necessary
to predict all entries of a DG within a processing cycle. To re-
duce the complexity and time of prediction computations, we
propose a pre-filtering strategy for entries. Before performing
the prediction operation, a portion of the entries of DG which
need to be predicted will be filtered. That is, when the last
few statistical periods frequencies of an entry are all 0, then
the next period frequency of this entry is set to 0 by default
without performing prediction operation. The mathematical
formulation of the entry filter is presented as the equation (3).

xei
t+(n+1)∗∆t

=

{
f(xei

t , xei
t+∆t

,...,xei
t+n∗∆t

),
∑K

j=0x
ei
t+j∗∆t

6=0

0,
∑K

j=0x
ei
t+j∗∆t

=0
(3)

where K represents the number of historical periods that need
to be observed.

It is possible to add a identifier to record whether the
historical frequency is 0 or not. Assuming that K = 8,
the array of identifiers for DGi is f [Ni], and Ni is the
total number of entries for DGi, then each identifier can be
recorded by an unsigned char data. Such as, the identifier
f [i] = 0x10(0001 0000) indicates that the access frequency
of the penultimate fifth period of entry ei is not 0 and the rest
is 0. And f [i] = 0x00 indicates the ei is dead. Identifiers will
be updated when a new statistical period is completed. Taking
the example of updating the identifier of ei: First, moving f[i]
one bit left, i.e., f [i] << 1 = 0x20 (0010 0000), the position
corresponding to the original penultimate fifth period is shifted
left to the penultimate sixth, and the position of the latest
period will be set to 0 by default. If the access frequency of
ei in this new period is 0, then the update of this identifier
is complete; otherwise, the identifier needs to be or-operated
with 0x01 (0000 0001), i.e., f [i] ‖ 0x01 = 0x21 (0010 0001),
to revise the position corresponding to the latest period as
non-zero. The specific pseudo-codes are shown as Algorithm
2 and Algorithm 3.
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Fig. 6: Storage structure

b) Storage: Given that the number of routing entries in a
real router is almost close to 106, it would be inefficient and
unacceptable to store a several periods of access frequency
data for all entries. Supposing that 100 periods of data are
recorded with unsigned short int, which will take 120MB
(32bit ∗ 106 ∗ 100) of on-chip storage space. From the ob-
servation of each entry historical frequency data, it is found
that when dead becomes active again, its recorded historical
access frequency is almost all 0. To reduce the storage space
requirements of AIR, we optimized the storage rules by adding
a 1-bit identifier for each entry to indicate its status, dead
or active. For the deads, it is unnecessary to store a large
amount of data, and all historical access frequencies are 0
by default. The overall storage architecture is depicted in the
Figure 6. Due to the filter, the storage optimization of entries
will not affect the prediction at all, because the deads would
have been filtered out already. When the statistical register
data shows that the status of an entry changes from dead to
active, its identifier will be changed and its subsequent access
frequency will also be recorded. When the last K periods
historical access frequencies of an entry is 0, where K can
be kept the same as in Equation (3), then its corresponding
identifier will be modified and and its storage space occupied
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Fig. 7: Block sketch

by it will be free. The massive number of dead entries makes
this optimization strategy quite profitable.

V. BLOCK-BASED ENTRY INSERTION TACTIC

In this section, we describe the BIT optimization tactic for
entry insertion of TCAM in detail present a typical case. Then
we demonstrate the feasibility of BIT by analyzing real routing
entries and flows traffic.

A. BIT Methodology

The skewed distribution of traffic allows us to leverage
small capacity TCAM to handle massive entry lookups, which,
however, requires timely entry updates as the cost. AIR can
predict which entries will match maximum lookups percentage
in the next statistical period, and these entries should be stored
in TCAM. Then, how to insert selected entries into TCAM
be the twin problem.

1) BIT Description: As explained in §II, the dependent
relationship between entries makes it necessary to move some
entries stored in TCAM when inserting new entries into
TCAM to ensure that all entries in one dependent-set are
stored in order of address from low to high according to the
prefix length from long to short. All entries of a RIB form
a directed acyclic graph based on the dependent relationship.
And the equivalent prefix length entries are independent of
each other, that is, there are no direct relationships between
any two of them, which means that their relative position in
TCAM does not affect the match results. The independent of
all equivalent prefix length entries present an opportunity to
optimize the entry insertion process during TCAM updates.
Under this circumstance, we proposed a BIT strategy to
optimize the entry insertion process of TCAM. To keep it
consistent, we take routing entries corresponding to the IPv4
address as focus description.

Hence, according to the match regulation that the lowest
address entry will be returned when there are multiple matched
entries, we divided TCAM into 25 different capacity parts
virtually from low address to high address by setting bound-
aries. BIT constrains all entries of different prefix-lengths can
only be stored in the corresponding block when inserted into
TCAM. Firstly, the order of divided blocks ensures that the
newly inserted entry will not affect its dependent entries stored
in other blocks. Then, since the entries in each block are all the
same prefix-length, i.e., the entries stored in the same block are
independent of each other. So, it is possible to directly insert
the new entry into the free space or overwrite the removed
entry according to the replacement algorithm.

The reason for not allocating TCAM space to 1-bit to
7-bit is that they are practically non-existent in almost all
RIBs that we researched. Besides, it is necessary to reserve
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Fig. 8: Insertion comparison

an additional one fixed space with the maximum address of
TCAM to store 0.0.0.0/0 for default forwarding. The
sketch of BIT TCAM is shown in Figure 7. In contrast to
the classical literature and the state-of-the-art tactics [6], [55],
[58], we take the influence of skewed traffic distribution on
entry accesses into consideration and design the BIT, an entry
access frequency-based TCAM storage constraint strategy.

2) An Instance: In the BIT way, the constraint of storage
range makes it possible to decouple dependent entries of
different lengths from each other in TCAM, thus avoiding
the movement of entries caused by finding the proper space
during the insertion process. For an entry that needs to be
inserted, it is simply to insert it into free space or rewrite the
entry that should be omitted from TCAM in the corresponding
length block. In the following, we will introduce the merit
of BIT structure over the off-the-shelf strategy with a clear
illustration.

As shown in Figure 8, suppose 114.19.24.0/24 and
129.218.0.0/16 should be inserted into TCAM. For the
BIT scheme, 114.19.24.0/24 can be written into the free
space of the 24-bit range directly, and 129.218.0.0/16
can overwrite 223.206.0.0/16 that should be omit-
ted according to replacement rules. For the off-the-shelf
scheme, due to the dependent relationship, it is necessary
to move 114.0.0.0/8 and 114.19.0.0/16 to high
address to vacate a relative lowest address space to store
114.19.24.0/24.

It should be noted that these movements are in this relatively
simple case, however, in fact, the movements will be more
complex in the circumstance of a large number of entries
in TCAM. Then, the BIT scheme can greatly optimize the
entry update process. The reason is that, in this example, the
intentional omission of inserting (omitting) dependent entries
with high (low) priority of the appointed one is because neither
of these two ways affects the number of associate dependent
entries.

B. Feasibility Analysis

Based on the real Routing Information Base (RIB) from
CAIDA [11], we counted the numbers of entries correspond-
ing to different prefix length from three timescales: from
2007 to 2020 in years, from January to December of 2020
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Fig. 9: Entry proportion

in months, and from 1 to 31 of January of 2020 in days,
respectively. The results are shown in Figure 9, where all the
lines in Figure 9(a) show a similar trend and the lines in Figure
9(b) and Figure 9(c) are almost completely overlapping. The
context of the stable proportion of each prefix length entry
in RIB drives us to speculate whether the entries stored in
TCAM also shown a stable distribution based on the prefix
length. Then, we respectively statistic dozens of periods of all
matched routing entries based on a real traffic from CAIDA in
different window steps, 105 and 104, the results of proportion
of different prefix length in each period are shown in Figure
10. Entries with prefix length of 24-bit and 16-bit are the most
numerous two categories, which account for nearly 50% of
the total entries. The stable and skewed distribution of entries
access frequencies enables BIT to be feasible.

C. Dynamic Range

According the observation of Figure 10, for a series con-
tinue flows, the ratio of different prefix length accessed entries
fluctuates slightly between each window step. So, storing
different prefix lengths entries into a fixed range may cause
improper utilization of TCAM resources. Suppose there is
no proper space to store when inserting an entry, including
no free space and no entries that can be removed from
TCAM, which indicates that the capacity of the corresponding
block is insufficient. Based on the insufficient degree, it can
dynamically tuning the store range of each prefix length
block by borrow from neighbors. The reason that it can only
borrow from direct neighbors is to ensure the continuity of all
ranges. When neighbors are not available for borrowing, based

(a) Window step: 104 packets

(b) Window step: 105 packets

Fig. 10: Accessed entries proportion
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on transferability, it is permitted to use the ranges between
the two as transit to borrow from a non-directly connected
block. The borrow only occurs when the distribution of the
accessed entries changes and still follows the basic proportion
constraints.

AIR provides entry access statistical information, which can
be leveraged for the tuning process. The range pointers of
blocks can be adjusted at a certain time interval or period,
according to the access ratio of different length prefix entries.
Each range can be updated as per Equation (4), where R(i)
indicates the latest ratio of accessed entries of prefix length
i. That is, the range pointer of each block is updated in the
order of prefix length from small to large based on the latest
proportion.

Blockj = [(1−
j∑

i=0

R(i)) ∗ size(TCAM)] (4)

The sketch of the borrowing process is shown in Figure 11.
Supposing a new entry inserting of the 24-bit range triggers
a borrowing operation. At this time, the neighbor of the
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Fig. 12: Number of IPv6 entries from 2007 to 2021

23-bit range is unavailable, but the 22-bit range has a free
space. First, entry 15.214.40.0/22 should be moved to
the free space to release the lowest address space of the 22-bit
range. This internal movement is to guarantee the continuity
of each range space during the borrowing process. Then, entry
19.28.23.0/23 will be moved to the newly released free
space. After updating related range pointers, the new entry,
19.48.4.0/24, can be inserted into the highest address
of the 24-bit range (the lowest address of the original 23-bit
range).

D. Discussion

The BIT scheme is mainly proposed for IPv4 entries, so it
may generate an intuition that it cannot be extended for IPv6
lookup or Access Control List (ACL) due to the longer prefix
length or multiple match fields, which theoretically smashing
block ranges and further increasing its quantity. However, in
fact, there is still a turnaround in this intuition.

An IPv6 address is divided into two parts, the first 64 bits
represent the network address and the rest 64 bits represent the
host address. In fact, IPv6 entries present a better aggregation.
The results of our statistics on real IPv6 RIBs3 are shown in
the Figure 12, which also confirms this conclusion. For multi-
fields ACL lookup, the BIT is equivalent to dimensionality re-
duction of IP address dimension. Therefore, it is still possible
to apply the existing algorithms in each block independently,
but the complexity of the computing is greatly reduced.

VI. EVALUATION FOR AIR

In order to present the experimental results in a clear and
concise manner, we evaluate AIR and BIT independently in
two sections, and then show the comprehensive performance
of A&B. In this section, we clarify the experimental setup
and analyzed the performance of AIR with some existing
strategies.

A. Experimental Setup

The data that we use in our evaluation was collected on
January 17, 2019 from a core router of a backbone network

3This dataset created on a daily basis, starting from 2005-05-09 for IPv4
and 2007-01-01 for IPv6 [65], [66].

in New York [11], with each piece of data consists of a five
tuple with timestamps: 〈 time series, source IP, destination IP,
source port, destination port, protocol〉.

In this set of experiments, to shield the entries dependency
feature, which be evaluated in §VII, we re-aggregate all
appeared destination IP addresses in data-set to 24-bit mask
length entries. We assume that the set of all aggregated entries
is the entire entry-set, which ensures the overall implementa-
tion and feasibility. The total number of packets in the data
set is 1.3 × 108, including 6.6 × 105 different destination IP
addresses, and 8,598 re-aggregated entries. For larger number
of entries in real backbone network, AIR is still applicable.

The LSTM-based prediction model is implemented by
Keras on Ubuntu 16.04-LTS operating system, where the
learning rate is set to 0.001, the batch size is 64, the epoch
is 30, the initial weights and biases are generated randomly,
and the training optimizer is Adam. We select 1,124 historical
periods for each of the 8,598 entries and divide them into
1,024*8,598 data items by using a sliding window with size
of 100 and step size of 1. The label of each data item is the
corresponding access frequency of the next period. Among
them, 60% as the training set, 20% as the validation set,
and 20% as the test set. And the prediction model is used
offline after it converges. The traditional scheme mentioned
in experiments of AIR is based “insert if missed” replacement
strategy, which selects the removed entries randomly.

B. AIR Performance

We first evaluate the required TCAM size when there are
different number of entries (from 2,000 to 20,000 entries4)
in the traffic. For the fairness, different groups experiments
were conducted while keeping the hit rates of both algorithms
consistent. The experiment results as presented in Figure
13(a), from which it can be seen that under the traditional
scheme, the required TCAM size increases linearly (from
2,000 to over 16,000) with entries scale. For AIR, the required
TCAM size is always around 2,000, which can save more than
8 times of TCAM capacity. In the real network where the
number of entries is extremely over 20,000, AIR works even
better.

From another point of view, different TCAM capacity sizes
will affect the hit rate and the number of entry replacements.
AIR and traditional schemes are simulated separately by
setting different TCAM sizes. The statistical period is set to
105, and AIR selects the entries equal to TCAM size from
high to low according to the predicted frequency. In addition,
the final results of the two strategies are averaged over 170
periods. With the increase of TCAM size, the accuracy of AIR
and traditional strategies are similar and exhibit an upward
trend. For any TCAM size, however, AIR has a significant
advantage over the traditional in terms of input replacement
time. The hit rate and replacement times of AIR and traditional
schemes are shown in Figure 13(b) and Figure 13(c).

4The entries is expanded by extending the measurement span based on the
original data set.
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(a) AIR performance of TCAM size (b) Hit rate (c) Replacement times

Fig. 13: AIR performance with the traditional strategy in TCAM size (a), hit rate (b) and replacements (c).

(a) Unique IP (b) Unique entry (c) Decay of hot entries

Fig. 14: Analysis of period

C. AIR Analysis

1) Period Analysis: We set different lengths statistic peri-
ods for the same traffic data set, 1 × 104, 2 × 104, 5 × 104,
1 × 105, 1.5 × 105, and 2 × 105. Apparently, for periods
of different lengths, the number of IPs or corresponding
entries appearing in each period is different. We count 200
periods of different lengths separately, and the distributions
of the number of IPs/entries in each condition are shown
in the box Figure 14(a) and Figure 14(b). As the length
increases, the number of IP/entry per period also increases
significantly, which makes us face the problem that a large
number of entries should be predicted in each prediction
process. And this situation also corresponds to the proposed
filter mechanism. In order to manipulate the time and resource
consumption of the prediction process, the period should
not be set too long. From another perspective, we analysed
the regularity of traffic and entries periodically and obtained
the hot entries’ traffic coverage in subsequent periods. For
different period lengths, the traffic coverage of the top 20% hot
entries in the next 10 periods are shown in Figure 14(c). The
longer the period, the more stable the hot entries are. And vice
versa, the shorter the period, the more obvious the decrease in
traffic coverage of hot entries over time. Hence, setting a short
period not only increases the prediction frequency, but also
reduces the reliability of historical frequency-based prediction.
In combination with the above analysis, the appropriate period
length should be determined according to traffic and device
characteristics, and we choose 105 in this experiments.

2) Model Prediction Accuracy: As explained in §III,
we address the prediction challenge under aggregated flows
circumstance by decoupling entries and making prediction on
disjoint entry groups. Therefore, we evaluate the prediction
performance of AIR here. In the process of model training, we
set the different numbers of data history data with a granularity
of 50, and prediction results show that there is only a slight
improvement in accuracy after the history data exceeds 100
periods. Considering that a longer number of data history
poses more challenges for both storage and computation, we
set the history period length to 100 in the experiment.

We randomly chose several groups with different access
time ranges during 176 periodic intervals. We chose the
prediction results compared with the truth in Figure 15(a) to
15(h), which indicate that the decoupled prediction algorithm
works well on various frequencies entries.

3) Threshold Analysis: An entry after being predicted will
be evaluated whether it is a hot entry based on a threshold
value TS, which will directly affect the TCAM hit rate and
the corresponding overhead. In this experiment, we evaluate
performances of AIR at various thresholds and compare the
results with another baseline solution, Least Recently Used
(LRU), as well as the traditional. In practice, a too-large TS
will make fewer entries cached and thus reduce the TCAM
hit rate, while a smaller TS will select too many entries that
exceed the TCAM space. Therefore, the TS value can be
determined based on the TCAM resources of routers, i.e., the
TS can be determined and adjusted by the range of access
frequency of the corresponding entry when the TCAM is being
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(a) Frequency in range (0, 70)
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(b) Frequency in range (0, 100)
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(c) Frequency in range (0, 140)
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(d) Frequency in range (0, 175)
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(e) Frequency in range (0, 250)
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(f) Frequency in range (0, 700)
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(g) Frequency in range (0, 2K)
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(h) Frequency in range (0, 4K)

Fig. 15: Prediction result of entries

filled.
• Hit Rate: We set the threshold TS to 1∼10 and conduct

a series of experiments to measure hit rate. In traditional,
when an entry that should be hit is not in TCAM, it will
be added to TCAM by randomly replacing another one.
In LRU, the least recently used one would be ejected,
while in AIR, we choose the one with least prediction
future frequency instead.
To ensure the validity of prediction results, we take
the average of 176 experiments as the final result. The
comparison results are presented in Figure 16(a). From
these results, it can bee observed that the average hit rate
of the above three mechanisms are similar to each other,
even with different thresholds. For example, when TS is
set to 1, the hit rates are 93.6%, 93.5%, 94.0% for AIR,
traditional and LRU, respectively.

• Replacement times: Although a lower TS can im-
prove the hit rate, it also results in higher overhead on
calculation consumption and entry replacement latency.
The operation of replacing an entry consists of two
steps: the first is to select an entry that needs to be
removed from the TCAM according to the replacement
algorithm, and the second is to free a suitable space
for the newly inserted entry by moving multiple entries
stored in the TCAM. The overhead of these two steps
is kept consistent in the experiments, so we count entry
replacement times under different TS (from 1 to 10, the
same as in Figure 16(a)) and show the results in Figure
16(b), where the results are in logarithm operation. From
these results, it can be seen that the replacement times
of both traditional and LRU are around 104 times, while
AIR’s is around 102 times, which is 100 times less.

4) Parallelization: As described in §IV, we parallelize the
prediction process to further improve the prediction efficiency
and ensure the timeliness of the results. In this experimental,
all entries are divided into 10 to 50 DGs, respectively. The
number of predictions required each time is illustrated in the

Figure 16(c). As DGs increases, the number of prediction en-
tries per time decreases. When the number of DGs is 50, only
171 entries need to be predicted, which is much smaller than
the 8,598 in nonparallel way. The optimal DG configuration
which is based on traffic characteristic and computing power
can enable statistics and predictions completely parallel.

5) Optimizations:
• The Filter: Eliminating dead entries from the prediction

list before execution can reduce the prediction compu-
tation in each operation cycle. The criteria for dead is
different, i.e., the length of the historical period should
be reviewed, which will influence the specific judgement.
After pre-processing by filters, the number of required
prediction entries is shown in the histogram of Figure
17(a). Note that the number of predictions without the
filter does not present in the figure, as it depends on the
number of entries of the RIB which is close to 106 in a
core router.
The effect of the filter on the hit rate at a threshold value
of 10 is shown in Figure 17(a). Due to the fluctuation
of the traffic, the more successive periods an entry is
accessed with a frequency of 0, i.e., the bigger the filter,
the higher of accuracy that an entry is identified as dead.
That is, the bigger the filter, the more computational
resources are required to make unnecessary predictions
for the dead entry; and the smaller the filter, the higher
the risk of misclassification, which may affect the hit
rate of TCAM. According to the experimental results,
the hit rate maintains the consistency with no filter when
the history period length is longer than 6, while the
prediction calculations under this condition are less than
6,907. Optimization performance can be further improved
if treating access frequency below the threshold as 0.

• Filter&Parallelization: The filter and parallelization
optimize the prediction execution from the spatial and
temporal point of view, which can further reduce the
number of predictions per time. In this experiment, the
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Fig. 16: Comparison of AIR, traditional strategy and LRU in hit rate (a) and replacement times (b), and group performance
improvement (c).

(a) Performance of filter (b) Performance of filter&parallelization (c) Analysis of active entries

Fig. 17: Analysis of optimizations

threshold of filter is set to minimum value of 1, which
means all entries with a frequency of 0 in the last
one period are classified to dead, and combined with
the parallelization strategy. In the case of different DG
configurations, the number of predictions per time is
shown in Figure 17(b).

• Storage: Although the entry set used for this experiment
is not the complete set of a RIB, the storage space
improvement can be theoretically calculated. The traffic
lasts about 5 minutes for a total of 1,300 periods (105

per period), during which 8,598 entries were accessed.
The storage space can be released when the access
frequencies of an entry in the last x periods are all 0,
we call the x as the decay period. With different decay
period configurations, the number of active entries in
1,300 periods is shown in the Figure 17(c). Even when
the decay period is 100 which is already the maximum,
the number of active is less than the total entries’. It can
be concluded that the maximum of the active entries for
this traffic is 8,387. In order to facilitate the calculation,
we expanded the active number to 104, and still kept
the total number of entries at 106. The on-chip storage
space required according to the above rule is 4.13MB
(106×1bit+104×100×32bit), which is much less than
the original scheme’s 120MB.

In summary, AIR achieves the similar hit rate to the current
commercial schemes, but with only 1/8 TCAM capacity and
less replacement times in two orders of magnitude.

TABLE III: Notation Description of BIT

Notation Description

PP
Protection Periods: the length of interval to protect
newly inserted entry from being removed immediately.

IT
Insertion Times: the number of entry insertions,
including missed and corresponding dependent entries.

EIT
Error Insertion Times: the number of entry insertion
fails due to block space constraints.

FT
Find Times: the number of dependent entry (appropriate
space) lookups when removing (inserting) an entry.

MT
Move Times: the number of TCAM entries movements
to free a appropriate space for the newly inserted entry.

VII. EVALUATION FOR BIT

In this section, we clarify the experimental description and
analyze the performance of BIT with the off-the-shelf strategy,
and then present the comprehensive performance of A&B.

A. Experiment Description

The RIB we used in the experiment is provided by CAIDA
[66], and the traffic data is kept consistent with the described
in §VI-A. To present the evaluation clearly, we will explain
the parameters and measurements we set in the experiment of
BIT. And Table III summarizes the common notations.

• Protection Periods (PP): When an entry was
inserted into TCAM, to prevent it from being replaced
out by subsequent inserted entries, we set a protection
mechanism for the newly inserted entries and take the
number of packets as the unit. For example, when the
protection period is 100, a newly inserted entry will not
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Fig. 18: The performance of BIT with TCAM size of 200 in hit rate (a), IT (b), EIT (c) and FT (d).
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Fig. 19: The performance of BIT with TCAM size of 400 in hit rate (a), IT (b), EIT (c) and FT (d).
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Fig. 20: The performance of BIT with TCAM size of 600 in hit rate (a), IT (b), EIT (c) and FT (d).

be swapped out until after at least 100 TCAM packet
lookups.

• Error Insertion Times (EIT): First, the
Insertion Times (IT) is the number of
operations to insert one entry, which is different
from the number of misses, because each time when a
new entry is inserted, its corresponding dependent entries
need to be inserted together. Usually, the insertion times
are greater than the miss times. Since the protection
period mechanism, there may be insert failures due to
the non-existence of entries that can be replaced out of
TCAM, and the number of failures is the error insertion
times.

• Find Times (FT): To find the appropriate space
when inserting an entry or to find the dependent entries
that need to be deleted together when deleting one entry,
we uniformly categorize such tasks as find operations.
The uniform expression in terms of times can mask
the specific lookup algorithm, e.g., hash or traversal.
Moreover, for the traversal algorithm, BIT is traversed in
each block instead of whole TCAM, and its complexity
can be reduced at least to

∑n
i=0 size(blocki)∗times(blocki)

size(TCAM)∗times(all)

considering different find times and size of each block.
• Move Times (MT): To vacate an appropriate space

after Find for an inserted entry may trigger multiple
overwrite operations. We refer to each overwrite as a
move, so MT is the total number of moves to insert
entries. Note that, as we explain in §V, MT does not
exist in the fixed BIT, i.e., MTBIT ≡ 0.

In this group of experiments, we adopt the “insert if
missed” replacement strategy. The off-the-shelf strategy that
we marked traditional in the evaluation, takes whole TCAM
as integration, and BIT divides TCAM into several blocks. By
setting different TCAM total capacity and protection period,
we obtain the experimental results of the Traditional and BIT.

B. BIT Analysis

In this subsection, we will present the improvement of BIT
from four performance indicators: hit rate, insertion times,
error insertion times, and find times. We have plotted Figure
18, Figure 19, and Figure 20 with different TCAM capacities,
200, 400, and 600, respectively. The numbers in the legend
of each figure represent protection period values. And the
statistical period for each result is 10K packets. Both BIT
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and traditional methods are based on the “insert if missed”
replacement strategy, which uses the LRU algorithm to select
the removed entries. The original size of each block in BIT
is set by the statistics of the entries accessed distribution.

1) Hit Rate: A larger capacity means that TCAM can
store more entries, and correspondingly, the hit rate of lookup
is higher for the same caching algorithm. Therefore, in this
experiment, the hit rate shows an overall increase from the
capacity of 200 to 600, as shown in Figure 18(a), Figure 19(a)
and Figure 20(a).

For the same capacity and PP (two lines with the same
maker in different colors in one figure), although both are the
basis of the identical replacement strategy, the result shows
that BIT performs better than the traditional scheme. And
for the same capacity and different PP s of BIT (three solid
lines in one figure), the smaller the PP is, the higher its
corresponding hit rate is, which brings frequent replacement
operations.

The reasons that BIT outperforms traditional ways on hit
rate is elaborated as follows. In the traditional schemes,
due to the entry dependency, when inserting an entry, all
dependent entries should be inserted jointly, which, however,
are rarely be accessed. Instead, BIT specifies the proportion
of TCAM resources for each block according to the real entry
access distribution. Due to the limitation of block size, these
dependent entries are not allowed to occupy other blocks,
which means that some of these dependent entries fail to be
inserted, thus ensuring that TCAM resources are fully utilized.
Finally, BIT improves the overall hit rate of TCAM.

2) Insertion Times: The results are presented in Figure
18(b), Figure 19(b), and Figure 20(b). It can be seen that
the insertion times of BIT is much smaller than that of the
traditional method with the same capacity and PP . Over-
all, this result is because BIT has a higher hit rate, then
fewer insertion operations are triggered. Since the insertion
operation corresponds to the write operation in the TCAM
update process, fewer write operations mean less write time
consumption and less computation consumption of entries
relationships. In particular, at a capacity of 600 (the y-axis
presents logarithm value of IT ), BIT over performs the
traditional more than 1,000 times. For BIT, the IT decreases
across orders of magnitude as the capacity increases.

3) Error Insertion Times: The results of EIT for different
TCAM capacities and PP are shown in Figure 18(c), Figure
19(c), and Figure 20(c). Although this metric does not directly
reflect the performance, it is still necessary to analyze the
causes and effects of error insertion, especially on the hit rate.
First of all, the error insertion occurs because it is not possible
to vacate a suitable space for the entry to be inserted even
by moving under the mechanism of the protection period. So
in the case of PP = 1 for traditional, no error insertion is
generated because the number of dependent entries of one
inserted entry does not exceed the total capacity of TCAM
in the experiment. But for BIT, even if PP = 1, error
insertion will occur when the number of dependent entries
with the same prefix length of one inserted entry exceeds the
corresponding block size. In a vertical comparison, taking PP
as the only variable, as PP increases then a larger EIT is
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Fig. 21: Move times

generated. If a relatively high hit rate is maintained, which
corresponds to a more stable IT , it will, in turn, make the
EIT stable at a relatively small value, as shown in Figure
20(c).

In addition, since BIT prevents dependent entries with low
or even zero access frequency from being stored in TCAM
more strictly than the traditional case, i.e., BIT reserves
valuable resources for the entries with high access frequency.
Therefore, under the same TCAM resources and replacement
strategy, BIT has a higher hit rate than the traditional case.

4) Find Times: Both BIT and the traditional case are
required to find if there are suitable spaces or dependent
entries that need to be deleted jointly. Although they can be
based on the same find algorithm, the complexity of traversal-
based algorithms is usually related to the scale N . Therefore,
we count and analyze the find operations triggered when
updating TCAM. For all three TCAM sizes from small to
large in the experiment, as described in Figure 18(d), Figure
19(d), and Figure 20(d), BIT over-performs than traditional
on FT , which is attributed to the fact that BIT corresponds to
less IT s, and, in turn, decreases the value of FT . Ultimately,
the combination of multiple factors comprehensively improves
the performance of BIT.

C. Move Times

The entries movement is an important impact factor of
TCAM update performance in existing deployed algorithms,
and theoretically, its impact is positively correlated with the
entry insertion times scale. For BIT, when and only when
borrowing process in dynamic mode will generate very few
moves, and the MT is only related to the stable block scale,
not to the increasing insertion times scale.

Since move times of the traditional are affected by PP
and TCAM capacity, the MT results of the traditional update
process are analyzed from these two aspects. In the PP = 1
case, when there is a relatively large TCAM capacity, there
are enough entries that can be replaced when inserting a new
entry, so few moves will be generated, as shown in Figure
21(a). The increment of PP restricts the replacement of the
entries stored in TCAM, so when PP = 100, as shown in
Figure 21(b), MT shows an increasing trend than PP = 1,
especially when the TCAM size is relatively small. However,
when PP = 104, MT shows a decrease instead, as shown
in Figure 21(c). This is because the protection mechanism
triggers a large number of insertion errors, which means lots
of entry insertion tasks are suspended, i.e., no move operation
is triggered.
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Fig. 22: Comparison dynamic and fixed block
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Fig. 23: Performance of A&B

D. Dynamic Block

To integrate AIR and BIT, a period-based replacement
strategy is used in this set of experiments, i.e., counting
information for a given length packets interval and then
updating TCAM, which is consistent with AIR. Setting the
statistic period window step to 10K packets, the hit rates are
plotted for different TCAM sizes, 200 (Figure 22(a)), 400
(Figure 22(b)), and 600 (Figure 22(c)), respectively.

The results reveal that the hit rate still follows the rule that
it increases with the growing TCAM size. And no matter for
which TCAM size, the dynamic scheme over-performs than
the fixed. When size = 200, the overall hit rate is low due
to the small size of the whole TCAM, which leads to a small
gap between dynamic and fixed. Similarly, at size = 600,
the TCAM size is relative large enough, the dynamic and the
fixed keep a high hit rate, also, with a small gap. However,
at size = 400, the in-between size has more maneuverability,
which makes the performance improvement of dynamic more
obvious.

E. AIR+BIT

A&B is integrated by updating the prediction result of
AIR to TCAM on the basis of the constraint of BIT. The
performance improvements of A&B in terms of hit rate,
insertion times, and find times are depicted in the figure by
comparing to the BIT-only policy, whose protection period is
104 that keeps consistent with the statistical period of A&B.
The TCAM size of this experiment is 600. The hit rate can
be further improved by the hot entry prediction of AIR, with
an average value of 98.58% for more than 600 periods, versus
74.97% for BIT-only, as shown in Figure 23(a). Due to the
threshold TS set in AIR, only hot entries were selected to
insert into TCAM, combined with the stability of the traffic,
only a very little amount of entries were inserted each period,
as shown in Figure 23(b). The average IT per 104 packets is
18, far better than 1,730 of BIT-only. Moreover, A&B without
error insertion times, i.e., EIT ≡ 0 due to the selection

mechanism of AIR, which constraints the number of inserted
entries does not exceed the size of the corresponding block.
Due to the performance improvement brought by the insertion
times, it also greatly reduces the number of times to find the
suitable space during updating TCAM, as shown in Figure
23(c). The average FT of A&B is 17, while BIT-only reaches
1,693.

VIII. DISCUSSION AND CONCLUSION

With the rapid development of technologies such as 5G/6G
and IoT, more and more terminals are accessing the Internet
and generating enormous traffic, which imposes huge pres-
sures on forwarding devices, so routers have to continuously
expand the capacity of TCAM to cope with the explosive
growth of the number of routing entries. In order to solve
the problems caused by large capacity TCAM, we have
designed an AI and block-based TCAM entry replacement
scheme termed A&B. AIR decouples the aggregates flows to
address the accuracy challenge of prediction, and on this basis,
parallelizes LSTM algorithm, which can satisfy the efficiency
demand for prediction results. BIT conducts a block-based
TCAM routing entry insertion tactic based on prefix length,
which can eliminate the entries moves issue when inserting
new entries, and compress the scale of dependent entries
according to probability and stable traffic skew distribution,
which greatly improves the efficiency of TCAM updates.
Moreover, given that AIR and BIT are not tightly coupled,
they also can provide optimization for TCAM independently.
The prediction mechanism of AIR is applicable in any ca-
pacity TCAM scenario to improve the hit rate. BIT provides
a strategy for TCAM item insertion from a new perspective
that can be combined with the already intensively studied table
entry compression optimization algorithms. As the two steps
of TCAM optimization, the combination of AIR and BIT, i.e.,
A&B, enhances the TCAM performance. Through a series of
experiments, A&B has been shown to achieve similar per-
formance to existing strategies while using only 1/8 TCAM
capacity and eliminate the complicated entries movements
during the updating process of TCAM. The improvement in
capacity will be more clear in large-scale networks.
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