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Abstract—Deep neural network(DNN) has exhibited outstand-
ing performance in many tasks like computer vision(CV) and
natural language processing(NLP). The pursuit of even higher
performance pushes neural networks to grow wider and deeper
with numerous parameters. A notable drawback of such large
models with billions of parameters is the ever-increasing demands
on computing and memory, which makes these models unable to
be deployed on resource-constrained systems. Knowledge distil-
lation(KD) is a representative technique to reduce the number of
parameters by transferring knowledge from a complex model to
a lightweight model.

In this paper, we doubt the widely used random sampling
process ignores the difference among all the heterogeneous sam-
ples damages distillation performance, and argue that samples
should be presented in a specific order. But how to feed samples
to the distilling process remains an open question. To address
the above problem, we present DCD - an automatic distillation
learning framework where training samples are arranged by a
dynamic curriculum strategy. Such a specific sequential training
method imitates the human learning process and thus achieves
faster convergence speed and higher accuracy.

We evaluated the performance of DCD using three image
classification datasets CIFAR-10, CIFAR-100, and CINIC-10. The
results show that DCD improves the network accuracy by 1.7%,
2.5%, and 1% respectively. Moreover, we also showed the same
effectiveness of DCD in the case of noise, which makes it more
practical in reality and universal in other scenarios.

Index Terms—knowledge distillation, curriculum learning ,
difficulty indicator, training schedule, model compression

I. INTRODUCTION

In recent years, deep neural network algorithms have shown
strong power in various areas such as computer vision (CV)
[1] and natural language processing (NLP) [2]. However, to
meet the requirements of high accuracy applications, neural
network structures are becoming more and more complex with
an ever-increasing amount of parameters. Such large models
are impractical to be deployed to edge devices.

To solve the above problem, researchers have proposed
many attempts to compress those large models to reduce the
computational overhead and storage space. As a representative
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model compression strategy, knowledge distillation (KD) [3]
has achieved remarkable performance improvements and there-
fore received rapidly increasing attention in recent years. The
main idea of knowledge distillation is to train a lightweight
student networks to mimic the knowledge extracted from the
original network to reduce model size. KD does perform well
in model compression, but does not in final performance. So
here we put forward a question, how to train lightweight
student models to achieve higher accuracy?

Inspired by human education system, which is a customized
orderly earning progress, students learn from easy tasks to
challenging ones. We doubt the random sampling process in
traditional KD methods and argue that samples should be
presented to the distillation framework in a specific order.
This idea coincides with curriculum learning (CL) [4] which
optimize the performance of traditional machine learning (ML)
algorithm in a similar way. The curriculum learning strategy
has improved the accuracy of NLP task by 1.37% on TNEWS
[5], and CV task by 1.81% on ImageNet [6].

However, the curriculum strategy that works on traditional
ML cannot be used on KD directly. Designing a sample
strategy for KD still facing two key technical challenges.
The first challenge is to precisely measure the difficulty
of tasks. Measure sample difficulty in KD has an intrinsic
trade-off between the teacher network indicator and student
network indicator because the student network learns from
both the teacher network and instances. The student network
is insufficient to measure sample difficulty at the beginning
of KD process, and the curriculum arranged by a large
teacher network may not be suitable for the student network.
The second challenge is to generate sample sequences. It is
challenging to predefine a universal schedule function because
the performance of the student network is affected by task
characteristics, distillation framework, and network structure.
On the other hand, introducing heuristic or meta-learning algo-
rithms as schedulers will cause mass extra computing costs. To
address the above challenges, we proposed a distillation learn-
ing framework with dynamic curriculum called DCD, which
consists of a curriculum module and a distillation module, the
distillation process alternates between the curriculum module
and distillation module until the student network converges.
The curriculum module is responsible for generating a sample
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sequence based on a fixed distillation snapshot. In detail, we
first employ the loss of teacher network simulation and the
confidence of the student network on samples as difficulty
indicators and weight them according to student network
performance. Then we introduce a scheduler base on student
network performance feedback to determine the sample subset
for the next distillation step. Regarding the distillation module,
the student network first trains on the sample subset generated
by the curriculum module, then updates the snapshot of the
student network, which is used in the curriculum module
as an indicator. We highlight that DCD is a general plug-in
application that can apply to different knowledge distillation
methods.

We conducted comprehensive experiments to validate the
performance of our approach and compared DCD with various
curriculum strategies on CIFAR-10, CIFAR-100, and CINIC-
10. The result shows that DCD improved accuracy by 1.7%,
2.5%, and 1%, respectively. We then evaluate DCD in noisy
scenarios, and the experimental results prove that DCD im-
proves student network accuracy by 1.71%,1.68%, and 1.58%
with acquisition noise.

Our contributions can be summarized as follows:
• We disclose the necessity of introducing curriculum learn-

ing in knowledge distillation rather than feeding training
samples randomly throughout the distillation process.

• We proposed a data-driven curriculum module to auto-
matically feed samples into the distillation process in a
specific order by employing the feedback of the student
network and the snapshot of distillation networks.

• We conducted a series of experiments to demonstrate
the optimization of our approach and fully discussed
the applicable scenarios and the choice of key hyper-
parameters in experiments.

The rest of the paper is structured as follows: related works
are presented in Section II, then the background and the
motivation are given in Section III, in Section IV we introduce
the framework and each module in detail, and the experimental
evaluation is provided in Section V, conclusions are included
in Section VI.

II. RELATED WORK

Our work connects two recently emerged research hotspots
of machine learning. First, knowledge distillation is a repre-
sentative neural network compression technique. The vanilla
distillation framework claims teacher network output contains
more information than original labels [3], which can be used
to train the student network because additional abstracted
knowledge is more suitable for neural network learning [7].
Therefore, FITNET [2] employs the outputs of intermedi-
ate layers to trains the student network. AT [8] introduce
the attention map as the soft label to provide supervised
information. To further enhance KD performance, FSP [9]
allows the student network to mimic the features matrix
calculated as the inner product between feature maps from
teacher network layers. Besides, feature embedding has been

used in student network training [10]. Instead of extracting
knowledge from a single teacher network, multiple teacher
frameworks are also proposed to improve the performance of
the student network [11], [12]. In terms of sample strategy
on KD, researchers proposed Data-Free distillation, which
transfers knowledge to the student network on the generated
samples to overcome the reliance on sample collection [13],
[14]. Knowledge distillation have been widely used in many
fields, including image classification tasks like interpretation
and diagnosis tasks [15], visual recognition [16] and text-to-
image synthesis [17]. natural language processing (NLP) tasks
like natural language understanding(NLU) [18], text generation
[19] and text recognition [20]. recommendation tasks like [21]
and speech recognition tasks to improve the efficiency and
recognition accuracy of acoustic models [22], [23] and many
other applications [24]–[26].

Secondly, curriculum learning(CL) gradually attracted the
attention of researchers. Inspired by the human education
system, CL improves model performance by feeding samples
in a meaningful order rather than random. Original CL [27]
proposed a predefined complexity indicator and presented
low complex examples first and gradually introduced more
complex samples in training process. Rather than the prede-
fined indicator, self-pace-learning [28] takes the sample-wise
loss of the target model snapshot as indicator to reduce the
dependence on prior knowledge and achieve automatic CL.
Furthermore, self-paced-curriculum-learning [29] proposed a
general framework and exploited the combination of prior
knowledge and learner feedback as training scheduler. To
further improve the flexibility of the curriculum framework, the
teacher-student framework allows student network learning on
the instance sequence scheduled by the independent teacher
model [30]. From the optimization perspective, researchers
combined CL with reinforcement learning(RL) to adjust the
curriculum through a trainable meta learner network [31].
Recent years, CL is widely used in various application scopes,
including supervised learning tasks within computer vision
[32], natural language processing [33], healthcare prediction
[34], and reinforcement learning [35].

III. BACKGROUND AND MOTIVATION

We first discuss the background of KD and CL in this
Section. Next, we disclose that distillation on ordered samples
can effectively improve student network performance through
a case study.

A. Knowledge Distillation

Knowledge Distillation introduces the soft label predicted by
a heavy but top-performance teacher model to provide extra
information to train a lightweight student network. The student
network mimics the output vector of the teacher network,
which encodes the similarities between different categories as

pi(x; τ) =
esi(x)/τ∑
k e

sk(x)/τ
(1)



where i is the category of sample x and si(x) is the output
distribution of sample x belongs to category i. In particular, a
hyper-parameter τ is introduced to soften the output distribu-
tion of the teacher network and adjust the relative magnitude
of the soft label. Distillation loss LKD is invited to transfer
knowledge by providing an additional loss signal as

LKD = −τ2
∑

x∼Dx

C∑
i=1

pi(x; τ) log
(
pis(x; τ)

)
(2)

where pis(x; τ) and pit(x; τ) represent the output of the student
and the teacher. C is the total the number of categories and
Dx indicates the training set. The total loss LTotal of student
network in KD is formulated as a linear combination of the
standard cross-entropy loss LCE between the student network
output and one hot label and knowledge distillation loss LKD

as
LTotal = λ1LCE + λ2LKD (3)

parameters λ1 and λ2 are introduced to balance two supervised
signals.

B. Curriculum learning

Curriculum learning (CL) is a training strategy inspired by
the learning process of human curricula by training a machine
learning model in a meaningful order instead of randomly
selected samples. The CL method has proven effective as a
simple plug-in strategy to improve the generalization capacity
and performance of model in various applications.

A conventional curriculum is a sequence of sample criteria
throughout the training process: C = S1...St...ST , curriculum
criterion is also a sample re-weighting function, which typ-
ically meets three definitions. Firstly, the complexity of the
training data should gradually increase in the training process,
the re-weighting of examples in later steps increases the
probability of more complex samples. Secondly, the amount
of samples gradually increases during the training process. In
the end, sample re-weights gradually coincide with the uniform
distribution of the original dataset and degenerate to training
on randomly selected samples.

C. Toy Experiment

We devised a simple experiment to demonstrate the value
of distillation in a specific order. We simply rank sam-
ples {x1, x2, x3...x3n} according the classification loss l of
the top-performance teacher network where {lx1<lx2<lx3}.
Then, we divide samples into three datasets where
x1, x2...xn ∈ Dataset1, {xn+1, xn+2...x2n} ∈ Dataset2,
and {x2n+1, x2n+2...x3n} ∈ Dataset3. Correspondingly, the
KD process is also divided into three stages. The student
network training 10,000 steps on Dataset1 at first, then we
add Dataset2 into the training set and perform the next 20,000
steps. In the end, Dataset3 is added, and the student network
learns on the original dataset until convergence. The baseline
strategy is to distill on randomly selected samples, that is,
randomly select sample batch on the dataset until convergence.

As shown in Figure1, distilling from easy to hard significantly
improves distillation performance compared to the distillation
on a randomly selected sample.

Fig. 1. Top-1 accuracy of random sample selection-based distillation versus
curriculum-based distillation on CIFAR-10

IV. METHODOLOGY

In the following, we introduce the DCD framework and
describe our proposed curriculum module in detail.

A. The Framework of Dynamic Curriculum Distillation

DCD is a novelty distillation framework for optimizing the
effectiveness of KD with the help of curriculum strategies.
Figure2 shows the distilling process of DCD. By applying
DCD, curriculum and distillation modules run alternately until
student network convergence on the training set. The curricu-
lum module weighted sample based on the current state of
the student network, which consists of two key components.
1) Difficulty Indicator measures the complexity of samples
according to the student and teacher network snapshot. 2)
Training Scheduler feed sample subsets to distillation in the
specific order by updating weights vector based on fresh sam-
ple difficulty measurement. The distillation module trains the
student network on the sample subset fed by the Curriculum
module and updates the difficulty indicator correspondingly.

Formally, DCD framework aims to optimize the student
model’s parameter ωs with pre-trained teacher network ϕt

on dataset re-weighted by curriculum weight vector v =
[v1, v2...vn]. The objective function is:

minEws,v,λ,t =

n∑
i=1

vili +R(v;λ) (4)

Where li and vi denote the total loss and curriculum weight
in DCD of sample i. The notation R is a negative l1-norm
curriculum regularization term formulated as

R(v;λ) = −λ
n∑

i=1

vi (5)



Fig. 2. The high-level view of the Dynamic Curriculum Distillation framework. DCD mainly consists of a curriculum module that selects samples based on the
fresh snapshot of the teacher and student network and a distillation module that trains the student network on the selected samples.

In each distilling step, DCD first updates the weights vector
with the snapshot of the student network and teacher network
by solving:

v∗i = arg min
vi∈[0,1]

vili +R(v;λ) (6)

Next, the distillation module optimizes the student network
parameter ωs by solving the weighted distillation loss function:

w∗
s = argmin

ws

N∑
i=1

v∗i li (7)

The overall algorithm of DCD is summarized in Algorithm 1.

B. Dynamic Difficulty Indicator

KD allows the student network learns directly from the
sample while simulating the output of the teacher network.
To reflect sample complexity accurately, we weighted two
components of distillation loss formalized as

ϕi = ωCE ∗ LCE

(
pis, yi

)
+ ωKD ∗ LKD(pis,p

i
t) (8)

Where LCE measures the complexity of a sample learned
by the student network, and LKD denotes the difficulty of
the student network simulating the teacher network output on
a sample. This function also can be used in the distillation
step to update student network parameters ωs to synchronize
difficulty indicator and distillation loss in terms of weights
assignment to both indicators. Next, We introduce the student
network performance on the validation set V als to weight the
first indicator as:

ωCE = Max(0, V als − 1/k) (9)

Particularly, the number of categories k is invited to avoid
overestimating student network performance because the initial

performance of the student network is affected by label distri-
bution. Meanwhile, we weighted the second indicator ID with
the performance gap between teacher and student networks as

ωKD = Max(0, V alt − V als) (10)

Intuitively, the indicator changes during the distillation
process. Simulation loss determines complexity indicator in
the early distillation stage because the randomly initialized
student network is unable to measure sample difficulty. When
the student network is able to compete with the teacher, it
is entirely up to the student network to measure the sample
complexity.

C. Positive Training Scheduler

Next, we developed a novel performance-driven scheduler
to automatically select samples for the next round. The main
idea of our scheduler is adjusting sample difficulty according
to the performance improved by training on current samples. If
the performance improvement is considerable, distilling should
continue on the current sample subset. Otherwise, the sample
subset should be updated if the student model is already
convergence on current samples. We introduced C to measure
the marginal performance improvement by training the student
network on the previous curriculum as

Cj = Max(V aljs − V alj−1
s , 0) (11)

We propose a positive training scheduler based on marginal
performance with two characteristics. Firstly, we invite the
order of the sample based on the complexity measurement
rather than the absolute value in the scheduler because the
difficulty measurement changes throughout the KD process.
Next, when the student network converges on the current
curriculum, the scheduler first updates the curriculum with the
latest student network snapshot and previous complexity range.



Algorithm 1: Precoding of Dynamic Curriculum for
Distillation

Input: Train set Dt, Val set Dv , Teacher network’
parameter ωt

Output: student network parameter ω∗
s

Initialize: ωs, hyper-parameters s ,distillation step j
V alt ← Evaluate ωt on validation data Dv

while E (ws, wt, v) not converges do
V als ← validate ωj

S on Dv

cj ← C(V aljs, V alj−1
s )

if s > cj then
ϕj ← Difficulty Indicator(ωs, ωt, V alt, Dt))
vj ←Training Scheduler(ϕj , cj , Dt, λj−1)

end
if s > cj−1 and s > cj then

vj ←Training Scheduler(ϕj , cj , Dt, λj)
end
lj ← ϕj

update ωj
s = argminws

E(ωs, ωt, vj , lj) return ω∗
s

end

Function Training Scheduler():
update λj by Eq.9-Eq.10
for i in Dt do

update vi with λj and ϕi by Eq.11
end
vj ← [vj1, v

j
2, v

j
3...]

return vj ;
End Function

Function Difficulty Indicator():
αS ←Max(0, V aljs − 1/k) by Eq.6
αD ←Max(0, V alt − V als) by Eq.7
for i in Dt do

IiS ← IS(P
i
s , yi)

IiD ← ID(P i
s , P

i
t )

ϕi ← αS ∗ IiS + αD ∗ IiD
end
ϕj ← [ϕj

1, ϕ
j
2, ϕ

j
3...]

return ϕj ;
End Function

If there is still no performance improvement in the continuing
distilling step, the sample weight function λ is updated as

λj
upper(Cj , µ

j , ∂j) = s× α

Cj
v⃗

× (µj−1 + ∂j−1) (12)

λj
lower(Cj , µ

j , ∂j) = s× α

Cj
v⃗

× (µj−1 − ∂j−1) (13)

Parameter µj denotes the lower bound of the sliding window
at distilling step j, and ∂j indicates the number of samples that
should be taken into the sliding window, which is updated
by the same amplitude simultaneously. We introduce a hyper-
parameter s to control curriculum adjustment speed. Greater

s inclines a faster curriculum shift when sample contribution
C is low and vice versa. According to fixed sample selection
window , sample weight vector v is given by

vi =

{
1 λlower < ϕi < λupper

0 else
(14)

Intuitively, the sample subset difficulty adjusts automatically
in the distillation process. If the student network improves
performance by distilling on the current subset, the sample
subset’s difficulty increases slowly for thoroughly learning.
Conversely, the difficulty of the sample subset is raised if the
student network converges on it.

D. Distillation On Curriculum

Instead of distilling with random sample selection, DCD
trains the student network with fixed sample weights vj by
solving the objective function as

ws = argmin
ws

N∑
i=1

vjiLossDCD(xi) (15)

where LossDCD is the distillation loss consisting of the
distillation loss and the standard cross-entropy loss as

LossDCD = CE(Ps, y) +KL(Ps, Pt) (16)

where the Ps and Pt refer to the outputs distribution of the
student and teacher network. Standard cross-entropy loss is
introduced to measure the mismatch of the ground truth label
y and student network output. Kullback-Leibler divergence is
used to measure the simulation loss between the student and
teacher network.

V. EXPERIMENTS

In this section, we evaluated the performance of DCD
and compared it with the predefined curriculum and random
sample selection on three datasets, CIFAR-10, CIFAR-100, and
CINIC-10. To make our experiments more comprehensive, we
report the performance of DCD on data with varying levels
of acquisition noise and further compare four learning rate
function, which severely affects DCD performance. The per-
formance of all the methods is evaluated by the Top-1 accuracy,
which is the probability that the highest prediction probability
category matches the actual category. All the experiments are
implemented in TensorFlow 2.0 running on an AWS server
equipped with an Intel Xeon E5-2630@2.6GHz and Tesla-T4
GPU.

A. Datasets and Backbone Network

In this paper, we employ three public image classification
datasets, including CIFAR-10, CIFAR-100, and CINIC-10,
to fully validate the performance of our approach. CIFAR-
10 and CIFAR-100 [36] contain 50000 training images and
10000 image performance verification at resolution 32×32
RGB. CINIC-10 [36] is a more complicated classification task
consisting of 270000 images from CIFAR and down-sampled
ImageNet at resolution 32×32 RGB.



Fig. 3. The training loss and validation accuracy of KD, MEKD, and DCD on CIFAR-10, CIFAR-100, and CINIC-10 dataset

In terms of the KD framework, we adopt a response-
based KD framework [3] as the backbone framework, which
allows the student network simulates the output of the teacher
network, the loss function of the student network is

li = (1− β)CE(P i
s , yi) + βKL(P i

s , P
i
t ) (17)

Where cross-entropy is used to measure the mismatch be-
tween the student network output and label, and KL-divergence
is employed to measure the mismatch between student and
teacher network output. Besides, the distillation temperature
in all experiments is set to 3 for fairness. The backbone
structure of the teacher network is ResNet-110 which has 1.7M
parameters, a homogeneous but smaller structure-ResNet-20 is
used for the student network with 0.27M parameters, which is
only 15% that of the teacher network.

B. Compared Methods

We compare DCD with the following sample strategies
commonly adopted in KD tasks.

• Random curriculum strategy is widely used in the con-
ventional KD framework. Each distillation step randomly
selects samples from the original training set to train the
student network, so the distribution of samples used in
each distillation step is consistent with that of the original
training samples.

• Predefined Multi-Evaluator Curriculum (MEKD) em-
ploys teacher network simulation loss and student net-
work confidence as complexity indicators with equal
weight. By applying MEKD, the distilling process is
divided into three stages. The student network distills on
the simplest 1/3 sample in the first stage. Next, the student
network snapshot in the complexity indicator is refreshed

to re-rank the sample and pick the 2/3 lower complexity
samples for distilling till convergence. In the third stage,
all samples are added to train the student network.

C. Main Result

We first compared the performance of DCD with the random
curriculum KD and MEKD. In DCD, the hyper-parameter s is
set to 0.01, and the distillation step is set to 1 epoch. In partic-
ular, we notice that the sample complexity also differs among
categories. The category distribution of samples constantly
changes in the distillation process, or even missing some
category will damage the distillation performance seriously.
Hence, we evaluate and schedule samples belonging to each
category separately to ensure that the category distribution of
samples in the training process is always consistent with the
original distribution.

As shown in Table I DCD consistently outperforms the
compared methods in accuracy on all three datasets. Details
of the convergence curve and accuracy curve are shown in
Figure 3 Firstly, Experiments show that DCD is an effective
method for KD that improves accuracy by 1.7%, 2.5%, and
1% on CIFAR-10, CIFAR-100, and CINIC-10 compared to
the conventional KD with random sample selection. Secondly,
introducing MEKD into distillation can also improve the accu-
racy by 1.2%, 1%, and 0.2% on three datasets. These results
also emphasize the importance of distilling the student network
on samples in a specific order. Compared with MEKD, DCD
further improves student accuracy by 0.5%, 1.5%, and 0.75%,
mainly for two reasons. First, the dynamic weight allocation
can balance two indicators better than the fixed one. Second,
the performance-driven training scheduler can automatically
adjust sample difficulty according to the student network



Fig. 4. The ranges of the sample difficulty throughout the DCD process on CIFAR-10, CIFAR-100, and CINIC-10.

feedback. The ranges of the sample difficulty throughout the
DCD process are shown in figure 4.

TABLE I
VALIDATION ACCURACY COMPARISON BETWEEN PROPOSED METHOD AND

BASELINES ON CIFAR-10, CIFAR-100, AND CINIC-10.

Teacher KD MEKD DCD
CIFAR-10 93.69% 85.29% 86.47% 87.00%
CIFAR-100 70.18% 55.08% 56.08% 57.58%
CINIC-10 92.71% 89.16% 89.37% 90.11%

D. Performance on data with acquisition noise

Data in reality applications is usually accompanied by
acquisition noise, particularly prominent in applications like
IoT services. Therefore, We further discuss whether the DCD
method can improve performance in the presence of acquisi-
tion noise, which is particularly important for its application.
We conduct experiments on the CINIC-10 dataset and simulate
acquisition noise by adding random Gaussian noise to raw
pictures. The hyperparameter α controls the intensity of the
noise, which increases sequentially from 10 to 30 noise. In
particular, we believe that the cost of obtaining a noise-free
dataset with the same distribution as the original dataset is
unacceptable in practice. Therefore the teacher network is
also pre-train on samples with noise. As shown in the tableII,
DCD improves the student network accuracy by 1.71%, 1.68%,
and 1.63% on data with ever-increasing acquisition noise.
Compared with distilling with random sample selection, DCD
guides the optimization process more smoothly and more
robust to mislabeled samples that helps the student network
convergence to the global optimal.

TABLE II
PERFORMANCE OF DCD ON DATA WITH DIFFERENT DEGREES OF

ACQUISITION NOISE

α = 10 α = 20 α = 30
KD 85.29% 85.20% 85.25%

DCD 87.00% 86.88% 86.83%

E. The Selection of Learning Rate

The learning rate (LR) seriously affects the student network
performance by applying DCD. We compared four LR func-
tions, including constant LR, exponential decay LR, cosine

LR, and cosine decay LR. Then empirically proposed the LR
function suitable for DCD and discussed the reason.

Fig. 5. The LR generated by different function in KD process

Fig. 6. The student network accuracy with different LR function

The LR generated by different function are shown in Figure5
and related convergence curves of the four LR function are
shown in Figure 6. Distilling with the exponential decay or
small constant learning rates is easy to fall into the local
optimal in the early stage on simple samples, which damages
the student network performance. Correspondingly, the cosine
learning rate is more suitable for curriculum distillation be-
cause the periodic increase in learning rate helps jump out local
optimal. Compared with the conventional cosine learning rate,



the adaptive cosine decay function reduces the performance of
the student network. We consider that DCD provides smooth
objective functions in the early stage. With complex samples
added, more local optimal appear in the objective function.
The small learning rate hinders the optimization process from
jumping out the local optimal points in the later stage of
distillation, which hurts the student network performance.

VI. CONCLUSION

In this paper, we proposed DCD - a curriculum-based dis-
tillation framework to improve student network performance.
Our approach incorporates a dynamic indicator that employs
the teacher and student network snapshots to measure sample
complexity and a scheduler that automatically adjusts the
complexity of the training set distilling process based on the
student network feedback. By applying DCD, samples are fed
into the distilling process in a specific order automatically
until the student network convergence on the whole training
set. Extensive experiments have shown that DCD significantly
improves the performance of student networks not only on
noiseless but also on noisy data sets.
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