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Abstract. Software Defined Networking (SDN) offers programmability
and flexibility by decoupling control plane from data plane. However, its
centralized control principle leads to various known performance issues
on data plane, e.g., a mismatch packet on data plane will ask control
plane how to forward this packet, resulting in extra packet processing
delay. In this paper, we illustrate OpenvSwitch (OVS) as an example to
investigate performance of SDN switches based on queueing theory. First
of all, we describe the architecture and internal workflow of OVS accord-
ing to its specifications. Then, we present a queueing network model for
OVS. The proposed model is able to evaluate the primary influencing fac-
tors on performance, including packet arrival rate, table miss probability
and packet scheduling policy. In addition, we optimize the established
model against these influencing factors. We also model the built-in buffer
with queueing theory and reveal how buffer size affects the performance.
Experimental results show that both the proposed optimized model and
a reasonable buffer size setting can improve the performance of OVS ef-
fectively.
Keywords− Software-Defined Networking; queueing theory; per-
formance analysis; OpenvSwitch

1 Introduction

The control plane is decoupled from the data plane in Software Defined Net-
works (SDN), providing a logically centralized platform to program the state of
data plane [1]. SDN switches on data plane are responsible for forwarding data
flows according to forwarding rules generated by control plane. Control plane
communicates with data plane via OpenFlow or OpenFlow-like protocols. SDN
could offer differentiated services for different applications and responds to high
availability requirements [2]. However, it also faces many performance issues,
e.g., packet processing delay is increased due to frequent interactions between
data plane and control plane.

For the incoming packets of a flow, the switch first lookups the flow table
that stores the forwarding rules. If there is a forwarding rule for this flow, the
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packets forward directly according to the rule matching actions. Otherwise, these
mismatch packets will be sent to the controller asking for forwarding decisions by
default. The controller decides how to forward these packets and sends operation
messages back to the switch. Then the mismatch packets and the subsequently
arrival packets of this flow are forwarded. According to the above analysis, it
can be seen that packet processing delay includes three parts: 1) forwarding
operations in the switch; 2) two-way interactions between the controller and the
switch; 3) forwarding decision making in the controller. In this paper, we take
OpenvSwitch (OVS) as a an example to investigate the performance of SDN
from the perspective of model analysis. OVS is a virtual and widely used switch
with flexible and programmable ability [3, 4].

Some studies have conducted on the performance of SDN with mathemati-
cal methodologies. Azodolmolky et al. [5] describe functionalities of SDN with
a model, which is built based on network calculus. It is the first time that net-
work calculus is utilized to model the behaviors of SDN. Delay and queue length
boundaries, as well as the buffer length are analyzed. Jarschel et al. [6] utilize
the feedback orientated queueing theory to evaluate the interactions between
control plane and data plane. Markovian servers are adopted for SDN, i.e. an
M/M/1 for the switch and an M/M/1/m for the controller. The main differ-
ence between queuing theory and network calculus is that the former is used to
model performance of a system under stable state, while the later calculates the
boundaries of a system in the worst cases.

Understanding the performance and limitations of SDN is an crucial issue
for real deployment. Existing studies have proved the benefits of mathematical
analysis models for performance analysis of SDN. However, few studies focus
on how to improve the performance based on the analysis models. Different
from previous studies, we propose a serious of models for OVS according to
its specifications [7]. We not only reveal how the influencing factors affect the
performance with a queueing network model, but also evaluate how to improve
the performance based on the optimized models. The main contributions of this
paper are summarized as follows.

– First of all, we present a queueing network model on the basis of workflow
of OVS. We first divide packet processing into several phases and establish
queueing network model at each processing phase. We then evaluate the
proposed models across different influencing factors, including packet arrival
rate, table miss probability and packet scheduling policy.

– To reduce the packet processing delay, we optimize the proposed model from
many aspects, including multi-threaded processing, priority queue settings
and different packet scheduling policies. We evaluate the optimized models
through a comparison analysis.

– To reduce interaction delay between the controller and the switch, we model
the built-in buffer based on queueing theory. We interpret how buffer size
affects packet processing delay with the built-in buffer model.

The remainder of this paper is organized as follows. Section II presents the
related studies. Section III provides an overview of OVS. Section IV introduces
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the queueing network models. Section V evaluates the established models with
experimental analysis. We conclude the paper in Section VI.

2 related work

Considering different influencing factors, existing studies have proposed some
approaches to evaluate and improve the performance of SDN. Ansell et al. [8]
present a network performance prediction tool based on queueing analytic mod-
els and couple with real-time measurement. It has the ability of examining how
the performance are affected by the changes of traffic load and link utilization.
Muhizi et al. [9] evaluate the performance of SDN with queuing network models,
which could observe the changes of packet processing delay under different pa-
rameter settings. Shang et al. [10] model packet processing delay of SDN switches
and controller. They mainly investigate how packet_in messages affect the per-
formance. Wang et al. [11] evaluate the throughput and delay of control plane
based on queuing theory. How the number of switches, as well as the the num-
ber of threads affect throughput and delay are studied. Mahmood et al. [12]
propose a Jackson network, which is used to model data plane, while the con-
troller is modelled as an M/M/1 queue with an infinite buffer or with a finite
buffer. Haiyan et al. [13] propose a queueing estimation model and extend it for
end-to-end delay analysis. Singh et al. [14] use queueing theory to model SDN
switches from two aspects, i.e., a shared buffer for both control plane traffic and
data plane traffic, and a buffer with two priority queues isolating control plane
traffic from data plane traffic. Fahmin et al. [15] combine SDN with Network
Functional Virtualization (NFV) to cope with performance issues. They aim at
modelling SDN with NFV with or without the controller. The M/M/1 queuing
model is utilized to evaluate the performance.

As a supplement to previous studies, we first model packet processing of
OVS to show how the performance is affected by various influencing factors, and
more importantly, we verify how to improve the performance with the optimized
models against these influencing factors.

3 Overview of OpenvSwitch

This section describes the architecture and working principles of OVS. OVS is a
widely used virtual switch for studying OpenFlow networks[3]. It usually works
with a centralized controller, which determines the path of a flow by modifying
the flow table inside OVS. When packets of a flow cannot match any rules,
packet_in messages are sent to the controller to request forwarding decisions.
On the other hand, OVS can also run without the controller. It forwards the
packets according to the messages of layer logic. In this paper, we focus on the
former case considering the interaction between OVS and the controller.

As depicted in Fig.1 there are two major components in OVS, i.e., user space
module and kernel data path module. The kernel data path module receives a
packet from the network interface. If there are no rules matching this packet, it
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Fig. 1. Internal architecture of OpenvSwitch

will be sent to the CPU of user space module. The packet header is encapsulated
into a packet_in message which is sent to the controller. The controller makes
forwarding decision for the mismatched packet according to global network state
information. Then the packet_out message and the flow_mod message are sent to
OVS. The user space module parses the messages from the controller, forwarding
the mismatched packet and updating flow table at the same time.

OVS is responsible for forwarding packets at data plane. OpenFlow protocol
allows the controller to communicate with OVS, obtaining statistical information
of flow table entries, and dynamically adding, updating, deleting flow forwarding
rules in the switches. Thus the controller can monitor the state of the whole net-
work. The user space module receives flow forwarding rules from the controller,
matching flow table for all the received packets and forwarding them according
to matching actions. OVS caches the results in the kernel data path module so
as to realize fast forwarding of the subsequently arrival packets. It allows OVS
to work independently of any SDN controller as it only needs to understand
the OpenFlow protocol [16]. Through the above analysis, it can be seen that
packet processing delay is mainly composed of the processing delay within OVS
(including the flow table lookup delay and the delay of processing packet_in
message, packet_out message and flow_mod message), the two-way propagation
delay between the controller and the switch, and the delay of making decisions
in the controller.

4 Queueing Network Model for OpenvSwitch

This section presents a mathematical theory analysis for packet processing in
OVS. We analyze the working principle of OVS and establish the mathematical
model, called Model SC, based on the queueing theory. In Model SC, “S” refers
to packet processing in the switch and “C” refers to packet processing in the
controller. Then, we improve Model SC and build a optimized queuing network
model, which is called Model MSC. “M” means using optimized methods to build
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models, including multi-thread processing, priority queue settings and different
packet scheduling policies. In addition, existing studies have shown that the
built-in buffer of OVS can reduce the two-way propagation delay between the
controller and the switch [20, 21], thus we model the buffer with queueing theory
to investigate how buffer size affects the performance.

4.1 Queueing network model (Model SC) analysis

We build a queueing network model for OVS and analyze different influencing
factors that affect packet processing delay. According to the working principle of
OVS, packet processing in OVS is divided into four phases. As depicted in Fig.2,
the switch is built into a queueing network model, i.e., Model SC, which can
be decomposed into four subsystems, each of which is established as a queueing
model. Detailed analysis of each phase is described as follows.
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Fig. 2. The queueing network model for OpenvSwitch

Phase one: the lookup process within the flow table We simplify the
lookup process of flow table and establish an M/M/1/K model, where K is
the maximum capacity of the input queue of the port. We assume that packet
arrivals obey Poisson distribution denoted by λ and time of flow table lookup
obeys negative exponential distribution with the service rate denoted by µs. Due
to the limitation of queue capacity, the arrival packets may get lost. The queue
is a finite integer [17, 18] , so the loss probability could be calculated. The loss
probability Ps at this phase is illustrated as equation (1).

Ps = (
λ

µs
)K (1)

Where, λ means the average packet arrival rate and µs is expressed as the average
lookup rate of flow table in the switch.

This phase mainly conducts flow table lookup for the arrival packets. If the
packets match forwarding rules, forwarding operations are executed directly.
Otherwise, the packets are forwarded to the CPU of user space module for further
processing. The average processing time of this phase is calculated as equation
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(2) based on queueing theory.

di,1 =
1

µs − (1− Ps)λ
(2)

Phase two: the encapsulation of packet_in message If an arrival packet
has not matched any rules of flow table, this packet is forwarded to the CPU
of user space module. The header of this mismatched packet is extracted and
encapsulated into a packet_in message which is sent to the controller for for-
warding decisions. The probability of such a situation is denoted as table-miss
rate represented by β. Therefore, we consider the process within the CPU as an
M/M/1 queueing model, and assume that the average processing time at this
phase obeys negative exponential distribution represented by β µ2. In addition,
the CPU receives the control operation packets from the controller at the same
time. It is assumed that the CPU adopts First In First Out (FIFO) strategy for
packet processing.

Phase three: packet processing in the controller The controller has a
global view and formulates forwarding decisions based on network state informa-
tion. We simplify the process of the controller and mainly focus on the processing
of packet_in messages. We establish a single queueing model for the controller.
We assume that the controller has a queue with infinite capacity for packet_in
messages. When a packet_in message arrives at the controller, the controller
processes it with a FIFO queue. The queue in the controller is denoted as an
M/M/1 queueing model. Existing studies have already investigated such kind of
models for SDN controllers [12, 19]. The average processing delay of a packet_in
message in the controller can be calculated by equation (3).

di,3 =
1

µc − λc
(3)

Where λc refers to the average packet arrival rate, and µc refers to the average
packet processing rate within the controller.

Phase four: parsing the messages from the controller After the controller
parsing the packet_in message, it formulates forwarding decisions and sends a
packet_out message and a flow_mod message) to the switch. The packet_out
message instructs switch to directly forward the mismatched packet through a
specified interface and the flow_mod message instructs switch to install, update
or delete the forwarding rule in the flow table. At this phase, the CPU is mainly
in charge of parsing the control operation messages from the controller. The
packets are forwarded according to the parsing results. It is suited as an M/M/1
model, and the parsing process is assumed to follow the negative exponential
distribution. The processing rate is denoted by µ4.

Since phase two and phase four have roughly the same processing in the
switch CPU, we can combine them into a queuing model. Note that the FIFO)
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queueing strategy is adopted. Hence the parameters of the queuing model meet
the conditions as shown in equation (4).{

λcpu = λ2 + λ4

µ2+µ4 ≤ µcpu
(4)

Where µcpu is the maximum processing capability of the switch CPU. Therefore,
the average processing time within the switch CPU is calculated as equation (5).

di,2 + di,4 =
1

µ2 + µ4 − λcpu
(5)

We consider propagation delay between the switch and the controller, be-
cause it is important to estimate packet processing delay. It consists of con-
stant propagation delay and dynamic queuing delay. In this paper, we analyze
the maximum propagation delay between the switch and the controller, i.e.,
dt = max

i=1,2,...,n
{di,t}.

In a real network, there is almost no queuing in the propagating process [13],
so the queuing delay can be ignored. The maximum propagation delay between
the switch and the controller can be considered a constant as shown in equation
(6).

dt = max
i=1,2,...,n

{di,t}=constant (6)

According to the queuing network models established above, we can estimate
the processing delay of a packet, from arriving at the switch to being forwarded
to the next hop successfully. The average packet processing delay Dpkt mainly
consists of four parts which are described as equation (7).

Dpkt =
1

n

n∑
i=1

[(1− β)di,1+β(

4∑
k=1

di,k + 2dt)] (7)

Where di,k is the processing delay of the ith packet at phase k.

4.2 Optimized queueing network model (Model MSC) analysis

To reduce packet processing delay, an optimized queueing model for OVS is pro-
posed, i.e., Model MSC. Compared with Model SC, Model MSC mainly optimize
flow table lookup and switch CPU processing with the methods of multi-threaded
processing, priority queue settings and different queue scheduling policies. The
optimized queueing network model is shown in Fig.3.

Optimizing flow table lookup To reduce the delay of flow table lookup, we
use multi-threaded processing to achieve rapid flow table lookup at phase one.
The switch CPU uses FIFO strategy to process packets. We define the queueing
network model as Model MSC-F and “F” means the FIFO queue is utilized.
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Fig. 3. The optimized queueing network model for OpenvSwitch

During the multi-thread process, each thread is established as an M/M/1/K
model, so the multi-thread process can be regarded as an M/M/C/K queuing
network model. When packets arrive at the switch, they will be assigned a thread
with the probability of pj meeting

c∑
j=1

pj = 1. The probability each thread re-

ceiving packets follows the proportional relation of {p1, p2, ..., pc}. The average
processing delay of multi-thread process is depicted in equation (8).

d
′

i.1 = max
j=1,2,...,m

{ 1

µs − (1− Ps)pjλ
} (8)

To further optimize the performance, we can use different scheduling policies
to assign the arrival packets during the multi-thread processing. We conduct
comparative analysis about this point in Section V.

Optimizing switch CPU processing We set the priority queues in the switch
CPU, handling messages from the controller as quickly as possible to reduce the
waiting delay of the packets buffered in the built-in buffer. Fig.3 shows the model
which uses priority queues for switch CPU with finite capacity. We define this
model as Model MSC-P and“P” refers to the priority queues designed in the
switch CPU.

Priority queues isolate control packets from data packs. In Model MSC-P,
packets received at phase two enter into the low-priority queue and packets
received at phase four (i.e., packet_out messages and flow_mod messages)) enter
into the high-priority queue. The switch CPU can be regarded as the server of a
queuing system. It prioritizes the packets in the high-priority queue. When there
are no packets in the high-priority queue, it processes the packets in the low-
priority queue. Therefore, the control packet arrival rate can be considered as
the average packet arrival rate of switch CPU (i.e.,λ′

cpu,). The average processing
delay of switch CPU is represented by equation (9).

d
′

i,2 + d
′

i,4 =
1

µcpu − λ′
cpu

(9)



Queueing Theory over OpenvSwitch 9

Based on the above analysis, we can calculate the average processing delay
with the optimized queueing network model.

D
′

pkt =
1

n

n∑
i=1

[(1− β)d
′

i,1+β(

4∑
k=1

d
′

i,k + 2dt)] (10)

Where d
′

i,k is the processing delay of the ith packet at phase k with Model MSC.

4.3 Built-in buffer queueing model analysis
The main purpose of setting up a built-in buffer is to store mismatched packets. It
caches subsequent packets belonging to the same flow in the built-in buffer, which
can reduce the number of packet_in messages and decrease the communication
load between the controller and the switch. Generally, there are three main
situations that need to be handled by the buffer.

(1) When receiving a mismatched packet, it is necessary to find out whether
there are packets belonging to the same flow in the built-in buffer. If there
are, the mismatched packet will be stored in the buffer. Otherwise, its header
information is encapsulated into a packet_in message sent to the controller.

(2) When waiting for the controller to return the packet_out message, if a
packet stored in the built-in buffer exceeds the time limit, proper processing is
required. For example, the switch sends a packet_in message to the controller
again or directly discards this packet.

(3) The controller makes a forwarding decision for the packets of a flow
and generates a packet_out message sent to the switch. The switch parses the
packet_out message and forwards the buffered packets of this flow to a specific
interface according to the forwarding operation.

Existing studies apply the built-in buffer to reduce the interactions between
the controller and the switch [20, 21]. When using the flow-level buffering mech-
anism [20], only one packet_in message is sent to the controller for all the mis-
matched packets of a flow. Experiment results show that the built-in buffer can
reduce the packet processing delay effectively. In this paper, we model the built-
in buffer based on queueing theory to investigate how buffer size affects the
packet processing delay through a theoretical analysis.

OpenvSwitch

SDN controller

Packet CPU

BufferP
a
ck

e
t_

in

Packet_buffered

CPU

Packet_out

Output 
Trigger

control

...

Fig. 4. The built-in buffer queueing model

We establish a triggered queueing network according to the processing mech-
anism of the built-in buffer. As shown in Fig.4, the process within the controller
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is simplified to an M/M/1 queueing model. The packet_out message from the
controller is considered as the trigger information to release corresponding pack-
ets buffered in the built-in buffer.

In this model, we assume that the arrival process of mismatched packets
follows Poisson distribution with the parameter of λmis. The average rate of
packet arriving at the controller satisfies equation (11).

λbuf = ωλmis (11)

Where ω denotes the proportion of packet_in messages generated for arrival
packets.

The processing process of controller obeys the negative exponential distribu-
tion with the parameter of µbuf . The average processing delay of controller can
be calculated by equation (12).

dbuf =
1

µbuf − λbuf
(12)

The propagation delay of the communication channel between the switch and
the controller is considered invariable. As shown in equation (13), the maximum
propagation delay is adopted.

ds→c = dc→s = dt (13)

Where ds→c denotes the delay between the switch sending the packet_in message
and the controller receiving the packet_in message, and dc→s denotes the delay
between the controller sending the packet_out message and the switch receiving
the packet_out message.

If there are no rules matching the packets of a flow, a series of operations are
carried out for setting up this flow. the delay of setting up a flow starting from
the first packet of the flow entering the switch to the packet leaving the switch.
According to the above analysis, the delay of setting up a flow can be calculated
as equation (14).

Dbuf = ds→c + dbuf + dc→s = 2dt +
1

µbuf − λbuf
(14)

The built-in buffer size depends on the number of arrival packets during
the period of setting up flows. Hence the size of built-in buffer is expressed as
equation (15).

B = λpkt_bufDbuf (15)
Where λpkt_buf is the average packet arrival rate at the built-in buffer. The
packet processing delay (i.e., Dpkt_buf ) with a built-in buffer can be calculated
by equation (16).

Dpkt_buf =
1

n

n∑
i=1

[(1− β)d
′

i,1 + β(d
′

i,CPU +Dbuf +
B

λrelease
)] (16)

Where d
′

i,CPU denotes the packet processing delay of switch CPU and λrelease

denotes the average rate of releasing the packets buffered in the built-in buffer.
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5 Performance evaluation

In this paper, a switch interacting with a controller is taken as the experimental
scenario. The proposed queuing network models are carried out based on discrete
event system simulation. We conduct a theoretical analysis of the performance
influencing factors, including average packet arrival rate, flow table miss rate,
packet scheduling policy and built-in buffer size.

The parameter settings for the proposed queuing network models are shown
in Table I [9, 11]. The average packet arrival rate λ ranges from 1000 to 4000
pkts/sec and the flow table miss rate β ranges from 0.1 to 1. The flow table
lookup rate µs is 2500 pkts/sec and the switch CPU processing rate µcpu is
2000 pkts/sec. The controller processing rate µc is 2500 pkts/sec and the packet
loss rate Ps ranges from 0.01 to 0.1. Each experiment is executed for 20 times
under different parameter settings. The average packet processing delay and the
packet loss rate are calculated. How the influencing factors affect the performance
is investigated with these analytical models, including Model SC which is the
standard queueing network model for OVS, Model MSC-F which optimizes flow
table lookup, and Model MSC-P which optimizes switch CPU processing.

Table 1. Parameter settings for the proposed queuing network models

parameters value
Table miss probability, β 0.1-1

Packet arrival rate, λ 1000-4000 pkts/sec
Lookup processing rate, µs 2500 pkts/sec

Switch CPU processing rate, µcpu 2000 pkts/sec
Controller processing rate, µc 2500 pkts/sec

Packet loss rate, Ps 0.01-0.1

5.1 Impact of packet arrival rate

Packet arrival rates may have a significant impact on the processing delay. Fig.5a
shows the impact of arrival rate on average packet processing delay Dpkt of Model
SC, Model MSC-F and Model MSC-P. For Model SC, packet arrival rate affects
the the average processing delay greatly, and the value of Dpkt increases rapidly
with the growth of λ. This is because the number of packets arriving at the
switch increases with the increase of λ, resulting in a longer waiting time in the
input queue.

Compared to Model SC, the average processing delay of Model MSC-P and
Model MSC-F is less affected by the packet arrival rate. This is because multi-
thread processing can accelerate packet processing and reduce the input queuing
delay. At the same time, Model MSC-P prioritizes the decision messages from the
controller, which reduces the waiting delay of mismatched packets. Therefore,
the average packet processing delay of Model MSC-P is smaller than that of
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Model MSC-P. We also find that Model MSC-P is basically not affected by the
packet arrival rate.
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Fig. 5. Fig.5a: Average packet processing delay under different arrival rates, Fig.5b:
Packet loss probability under different arrival rates.

Fig.5b shows the impact of arrival rate on packet loss probability, i.e., Ps. It
can be observed that Model MSC-P and Model MSC-F have better performance
on packet loss probability. Ps of Model MSC-P is smaller than that of Model
MSC-F in most cases. Compared to Model SC, the packet loss probability of
Model MSC-P and Model MSC-F is less affected by λ. This is attributed to
the multi-thread processing mechanism and the priority queue in the optimized
models. Model SC adopts the single-thread processing mechanism to process
packets. When λ is not greater than µs, packet loss probability is low and fluc-
tuates around 2.5%. This is because packets are processed quickly by the switch
and there is no congestion. When λ is greater than µs, congestion occurs in the
switch, making the packet loss probability increase. After that threshold, Ps of
Model SC increases with the growth of λ.

5.2 Impact of table miss probability

Table miss rate β is the ratio of mismatched packets to the total arrival packets.
It is expressed by equation (17).

β =
Npkt_in

Ntotal
(17)

Where Npkt_in means the number of mismatch packets and Ntotal means the
number of total arrival packets.

Fig.6a shows the impact of table miss probability on average packet pro-
cessing delay. It can be seen that packet processing delay of the three queuing
network models increases with the growth of table miss probability. Due to
multi-thread processing, Model MSC-F and Model MSC-P perform better than
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Fig. 6. Fig.6a: Average packet processing delay under different table miss probability,
Fig.6b: Packet loss probability under different table miss probability β.

Model SC. In addition, Model MSC-P presents an obvious advantage compared
with Model SC and Model MSC-F. This is also because Model MSC-P priori-
tizes the control messages from the controller and forwards the packets cached
in the built-in buffer of the switch as soon as possible, which greatly reduces the
waiting delay of mismatched packets. Therefore, Model MSC-P can effectively
mitigate the impact of table miss probability on packet processing delay.

Fig.6b shows the changes of packet loss under different table miss probability.
It can be seen that the packet loss rates of the three models increase with the
growth of table miss probability. The values of them are similar to each other
under the same flow table miss probability. That is to say Model MSC-F and
Model MSC-P can not effectively reduce the packet loss. To sum up, when table
miss rate is high, Model MSC-P has smaller packet processing delay and lower
packet loss rate. In other words, it performs better in handling the mismatched
packets.

5.3 Impact of packet scheduling policies

For the optimized models, the switch adopts the multi-thread processing mech-
anism to process the received packets. Each thread contains a FIFO queue with
limited capacity. How to schedule the arrival packets for the parallel queues is
worth discussing. In this section, we evaluate the impact of packet scheduling
policies on processing delay. The following four packet scheduling policies are
designed for the multi-thread processing mechanism of Model MSC-F.

Policy one When a packet arrives at the switch, the processing unit schedules
the first input queue to process it. If this input queue is blocked by this packet,
the processing unit will allocate subsequent packets to another queue. If the
input queues of all threads are blocked, the processing unit will no longer receive
packets for the switch.



14 Li F, Zheng N, et al.

Policy two The processing unit allocates arrival packets to input queues in
turn for processing. The processing unit will schedule from queue one to queue
M assuming that the interface has M queues in total. After polling M queues,
The processing unit schedules from queue one.

Policy three Packets are allocated to input queues of multiple threads accord-
ing to a specified probability. An arrival packet will be assigned to a queue of one
thread with the probability of pj , where

c∑
j=1

pj = 1. The probability assigned to

each thread follows a proportional relationship, i.e., {p1, p2, ..., pc}. The process-
ing unit distributes the arrival packets to the threads for processing according
to the proportional relationship.

Policy four When a packet arrives at the switch, processing unit randomly
assigns it to an input queue for processing. The input queue of each thread is
equally to be selected.
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Fig. 7. Average packet processing delay of different scheduling policies

Fig.7 shows the impact of packet scheduling polices on processing delay across
different arrival rates. Results show that packet processing delay of policy one
increases with the growth of arrival rate. When λ ≤ µs, the average packet
processing delay is low and keeps stable. When λ > µs, the packet arrival rate
exceeds the switch processing rate. As a result, the average packet processing
delay presents a rapid growth with the increase of arrival rate. Packet process-
ing delay of the other three policies is not significantly affected by the arrival
rate. Switch randomly assigns packets to threads, which can alleviate the con-
gestion effectively. We find that policy three has the lowest processing delay in
most cases. This is because the switch distributes packets to threads according
to the pre-defined probability relationship. This makes full use of multi-thread
resources, which can reduce the processing delay of the switch.

5.4 Impact of built-in buffer size
Built-in buffer is mainly used to store mismatched packets. When the switch
receives the first data packet of a new flow, the switch CPU encapsulates the
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Fig. 8. flow setup delay

header information of the packet and sends a packet_in message to the controller,
while the subsequently arrival packets of this flow will be buffered in the built-in
buffer, waiting for the decision issued by the controller. When the built-in buffer
is exhausted, the switch CPU will encapsulate the whole mismatched packet into
packet_in message and send it to the controller. After making a decision, the
controller will generate packet_out message and flow_mod message, which are
sent to the switch. This will lead to an increase in the load of the communication
channel between the switch and the controller, resulting in a rapid decline in
the processing performance of the switch. Therefore, avoiding the exhaustion of
the built-in buffer is the key to reduce the switch processing delay. Hence it is
necessary to determine the size of the built-in buffer to reduce its impact on the
processing delay.

By setting different built-in buffer sizes and carrying out several experiments
under different packet arrival rates, we investigate the changes of processing
delay and then determine the range of the built-in buffer size. Since the size of
packets arriving at the switch may be different, a fixed storage space is allocated
for each buffered packet in order to store mismatched packets conveniently. Fig.8
shows the packet processing delay of different flows across different built-in buffer
sizes.

It can be seen that the average processing delay decreases obviously with the
increase of the buffer size. However, when buffer size exceeds a certain value,
its impact on packet processing delay becomes smaller until it remains basically
unchanged. In addition, the impact of arrival rate on processing delay decreases
with the increase of the buffer size. When the size of built-in buffer is constant,
the processing delay increases with the growth of arrival rate. However, when
buffer size exceeds 20 KB, the processing delay will no longer be affected by the
arrival rate. Therefore, the built-in buffer of the switch can alleviate the impact
of arrival rate on processing delay to a certain extent. Therefore, we can set the
built-in buffer size for the switch according to the experiment results, so as to
reduce the processing delay of the switch and improve the performance of the
whole network.
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6 Conclusion

In this paper, we investigate and optimize the performance of OpenvSwitch with
queueing theory. First of all, we present a basic queueing network model accord-
ing the working principles of OVS. We can evaluate the performance influencing
factors with the proposed model. In addition, we optimize the basic model from
many aspects, including multi-threaded processing, setting priority queues and
utilizing different packet scheduling policies. Then we expound the impact of
built-in buffer size on packet processing delay.

We evaluate these optimized methods through a comparison analysis. We
compare the performance of Model SC (basic model), Model MSC-F (multi-
thread with FIFO queue model) and Model MSC-P (multi-thread with priority
queue model). Results reveal that the optimized models have better performance
than the basic model. We also find that the built-in buffer size has a more
significant impact on packet processing delay via theoretical verification. In the
future, we will extend the use of the mathematical analysis model to evaluate and
optimize the performance of SDN switches, and provide guidelines for optimal
switch design.
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