
TPA based content popularity prediction for caching
and routing in edge-cloud cooperative network

Bo Yi1, Fuliang Li1,3, Yuchao Zhang2, Xingwei Wang1,∗
1College of Computer Science and Engineering, Northeastern University, Shenyang, China

2School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China
3Beijing National Research Center for Information Science and Technology, Beijing, China

yibo@cse.neu.edu.cn, lifuliang207@126.com, yczhang@bupt.edu.cn, wangxw@mail.neu.edu.cn

Abstract—The rapid development and application of 5G/B5G
generate tremendous amount of traffic which in turn cause great
burden for the corresponding transmission network. One typical
way to address such challenge is to sink the content (e.g., 4K
and 8K videos) from the remote cloud to the edge servers. In
this case, how to efficiently visiting and getting these contents
becomes a new problem, in which the cooperation between cloud
and edge should be taken into consideration. In this regard,
this work builds an edge and cloud cooperative routing and
caching system which consists of three main modules of con-
tent popularity prediction, cooperative caching and cooperative
routing. Specifically, the content prediction is designed by jointly
leveraging the technologies of Long Short-Term Memory (LSTM)
and Temporal Pattern Attention (TPA) to dig the traffic features
and predict the future content popularity. Based on the prediction
results and the technology of reinforce learning, the cooperative
caching module designs both a reactive content replacement and
an active content caching strategies. After that, the cooperative
routing is carried out to help customers visiting and obtaining
these content efficiently with the objective of minimizing the
overhead. The experimental results indicate that the proposed
methods outperform the state-of-the-art benchmarks in terms
of the caching hit rate, the average throughput, the successful
content delivery rate and the average routing overhead.

Index Terms—Edge-cloud cooperation, Temporal pattern at-
tention, routing, content popularity, caching

I. INTRODUCTION

The rapid development of the fifth generation mobile tech-
nology 5G promotes a lot of new technologies and applications
such as artificial intelligence, big data, cloud computing,
virtual reality and augmented reality, etc. This is because
5G enables the Internet of everything [1], such that all the
equipments and devices used to be disconnected can now
communicate and cooperate with each other to complete the
same task. Besides, such cooperation can happen not only
among mobile devices, but also between clouds and edge
servers. In this way, the efficiency of data transmission and
content retrieving can be greatly improved.

This work is supported by the National Key Research and Development Pro-
gram of China under Grant No. 2019YFB1802800; the National Natural Sci-
ence Foundation of China under Grant No. 62002055, 62032013, 61872073;
China Postdoctoral Science Foundation under Grant No. 2020M680972; the
Postdoctoral Research Fund of Northeastern University of China under Grant
No. 20200103; the Fundamental Research Funds for the Central Universities
of China under Grant No. N2016012; the Open Research Fund Program of
Beijing National Research Center for Information Science and Technology.

Despite this, the opportunities are always accompanied by
the challenges. According to the recent statistics from the
International Data Corporation (IDC), there will be over 50 bil-
lion mobile devices connecting to the Internet [2]. Under this
case, two obvious challenges can be easily discovered. On one
hand, such massive mobile devices wil generate tremendous
traffic data which are far beyond the capacity of clouds. On the
other hand, there are also a lot of invalid data which need to be
not only cleaned, but also identified [3]. Apart from these easy-
to-be-discovered issues, another significant one behind them
is that the burden of the corresponding transmission network
between cloud and edge increases greatly and proportional
with the scale of mobile devices. Such situation further causes
many difficulties for obtaining the required contents in remote
clouds. For example, 1 billion customers demand the same
8K video content at the same time would inevitably result in
network congestion.

The traditional content delivery network paradigm cannot
satisfy the requirements of many 5G applications nowadays.
Hence, many researches try to integrate the content delivery
network with the edge servers, during which the contents are
sunk from cloud to edge for the purpose of releasing the
burden of clouds [4]. In addition, this also helps releasing
the burden of the transmission network, since customers can
visit and obtain the contents from closer edge servers. Another
technology used to sink contents from cloud to edge is the
concept of Mobile Edge Computing (MEC) which offers
better Quality of Service (QoS) to customers. Nevertheless,
reviewing the state-of-the-art related work (e.g., [5]-[15]),
most of them simply remove the problems from cloud to
the edge. One extreme condition is that we can cache all the
contents in edge servers, which may result in the fact that only
20% (or even lower) of them can be used effectively. Hence,
in order to maximize the resource and the content utilization,
a balance and cooperation between the cloud and edge should
be reached.

Taking the above analysis into consideration, we propose
an edge-cloud cooperative system, in which efficient caching
and routing methods are designed to achieve high performance
content delivery. The caching part is used to decide which
contents should be placed in the corresponding regions, while
the routing part is used to efficiently connect customers and
the expected contents. Then, the main contributions of this



work are summarized as follows:
• We propose an edge-cloud cooperative system for high

performance content delivery, in which two kinds of
cooperative ways are designed. The first way is verti-
cal cooperation, since it defines the cooperative policy
between clouds (i.e., centralized controller) and edge
servers. The second way is horizontal cooperation, which
defines the cooperative policy among edge servers.

• In addition, a TPA and LSTM based content popularity
prediction method is proposed. According to the predicted
results, we can inactively replace the unpopular contents
with high popularity contents to increase the content hit
rate.

• Based on the horizontal cooperative model, we design an
active caching method which regards each edge server as
an intelligent agent. Then, these agents can learn from
each other on the basis of the reinforce learning model,
such that the proposed caching method can dynamically
adapt to customer requests.

• Based on the vertical cooperative model, the global
view of the centralized cloud (i.e., controller) is used
to calculate the routing path between customers and the
expected contents with minimal overhead and latency.

The rest of this work are organized as follows. Section
II reviews the related and state-of-the-art work. Section III
comprehensively introduces the proposed system framework
and problem model. Section IV shows the detailed design of
the proposed methods. Section V gives the experimental results
and Section VI concludes this work.

II. RELATED WORK

Efficient content delivery is important especially in the MEC
environment, since the rapid increasing mobile traffic would
cause a large amount of unnecessary data transmission and
lower content hit rate which then decrease the QoS of content
delivery. To address such issue, the caching and routing are
two typical and vital perspectives for content delivery, from
which many researches leveraging the technologies of cloud
computing, edge computing and AI are proposed.

As explained, the popular contents are moving from cloud
to the edge. Hence, many researches (e.g., [5]-[9]) focus
on addressing the content delivery problem at the edge. For
example, reference [5] tried to address the content delivery
problem at the base station. However, the common way is
to cache the contents in the edge server instead of the base
station. Following this common trend, reference [6] proposed
an intelligent content delivery method in wireless networks
by deploying intelligent routers at the edge. Such intelligent
edge router was used to store information such as content
popularity, user mobility and social relationship, etc. Besides,
reference [7] defined the concept of MEC servers at the edge.
Then, it proposed a MEC intelligent cache analysis platform
with multiple algorithms integrated to decide which media
files need to be stored in advance to meet the future content
demands. Similarly, reference [8] also targeted on the MEC
servers. The differences between them are that the former

aimed at improving the content caching efficiency, while the
latter aimed at minimizing the capital expenditure of service
providers. Different from the above work relying on the cen-
tralized control, reference [9] proposed a distributed content
delivery framework and it enabled each edge server with the
ability to accept/deliver requests or forwarding contents. Then,
these edge servers could work together to achieve the same
goal and maximize the profits earned from the corresponding
content delivery.

The optimal content caching is one important aspect for
content delivery. In this regard, reference [10] proposed to
search the most suitable content to cache at the edge by
using the migration learning model. However, such migration
model based caching method relied heavily on the context
information (e.g., history requirements and social relation-
ship). In this way, the quality of the context used for training
determined the performance of this method, while high quality
data was always hard to obtain. Similarly, reference [11]
adopted another learning model to estimate the popularity of
contents dynamically, which was then used to guide the pro-
cess of caching. Reference [12] studied the dynamic content
placement problem on edge servers. In particular, the time-
varying characteristics of contents were considered in this
work to propose a new caching method which replaced the
unpopular contents with popular ones, such that the cache hit
rate could be improved. Despite these work used some kinds
of learning models, they were actually not intelligent enough.
Then, most researches were begin to use the technologies of
deep learning and reinforce learning models.

Reference [13] proposed a content caching and routing
method based on the reinforce learning model. On one hand,
the history content demands were collected as the training
data. On the other hand, the edge servers could also learn from
each other. Jointly taking the two points into consideration,
this work could reduce the abundant traffic and improve the
content deliver efficiency. Reference [14] also leveraged the
technology of reinforce learning. The difference was that the
latter enabled edge servers to decide caching independently
according to their own capacities. Then, the remote centralized
controller would evaluate the performance and feedback the
results to these edge servers, such that these edge servers
could further optimize their actions towards better caching
and routing. Generally, the content popularity was unknown
and reference [15] intended to address the content delivery
problem in such situation with the objective of minimizing
the average content transmission delay. In this way, this work
first proposed a multi-agent framework to decide the content
caching based on deep actor-critic reinforcement learning and
then it proposed an improved shortest path routing method to
reduce the average delay between customers and contents.

Although the above research have achieved good progress,
most of them still ignore the importance of cooperation
between edge servers and clouds, which may easily fall into
the situation of local optimum. Therefore, this work propose
two kinds of cooperative models which are the horizontal
cooperation and the vertical cooperation. Based on such two



Cloud

NPCT

Cooperative routing methodTPA based content popularity prediction method

LCPT

Edge controller 1

CS

Statistics

Control & management, Computing and Training Center

Edge node1

CS

FDPB

Mobile devices

Edge caching domain1

Edge node2

CS

FDPB

Edge node3

CS

FDPB

Reinforce learning based caching method

Cooperative 

caching policy

Routing 

policy

Predicted

results

Caching 

policy Edge controller 2

Edge

node

 

Edge caching 

domain2

Content 

replacement policy

Fig. 1. System framework

cooperation models, we also design the intelligent content
popularity prediction, caching and routing methods which can
help to increase the utilization of cache hit rate and reduce the
transmission overhead.

III. SYSTEM FRAMEWORK AND PROBLEM MODEL

A. System Framework

The overall system framework is shown in Fig. 1, where it
consists of four main modules, that is, the Statistics Module
(SM), the content Popularity prediction Module (PM), the
caching module (CM) and the Routing Module (RM). The
main functions of them are explained as follows:

• SM: it is implemented in the edge controller and re-
sponsible for collecting information from edge servers
in its domain with the tables of Content Store (CS), Lo-
cal Content Popularity Table (LCPT) and Neighborhood
Popular Content Table (NPCT). Then, the collected data
will be handled in this module before sending them to
the cloud for the following content popularity prediction
and routing calculation.

• PM: it first constructs a prediction model by jointly
leveraging TPA and LSTM. Then, taking the collected
and cleaned data from SM as the input, PM will train
this prediction model continuously. During the training
process, the corresponding prediction parameters will
be adapted dynamically to provide the most accurate
prediction results for determining the content replacement
policy.

• CM: it regards the edge servers as intelligent agents
and then build a multi-intelligent-agent reinforce learning
model among these agents. Each server is allowed to
learn from each other, so that they need to maintain
two tables which are the CS and the Forwarding Data
Packet Database (FDPD). Then, these edge servers can
independently decide which content should be cached
according to the actual local conditions. Such pattern is
referred to as the horizontal cooperation.

• RM: it is in charge of dynamically planning the routing
path between customers and contents under the guidance
of the centralized cloud, through which we can build the
cooperation between clouds and the edge servers. Such
pattern is referred to as the vertical cooperation.

Based on the four main modules, the overall workflow
can be described as follows. Firstly, SM collects the related
information from each edge server and executes the statistic
processing. Then, SM sends the processed data to both the
cloud and other edge controllers. On one hand, for the cloud,
it regards these data as parameters of both PM and RM.
Specifically, PM uses the statistical data uploaded by each
edge controller to construct and train the prediction model for
the purpose of periodically predicting the content popularity.
RM uses these data to calculate the optimal routing path for
efficient content delivery. On the other hand, for the other edge
servers, they rely on using these data reach a consensus, based
on which these edge servers can easily cooperate with each
other to find the most balancing and efficient caching policy.

B. Problem Model

In the edge-cloud cooperative environment, there are M
edge servers denoted by S = {s1, s2, . . . , sM}. Assuming
that the centralized cloud has all the contents denoted by
C = {c1, c2, . . . , cF }, where F is the number of categories
of contents. Then, ∀ci, sm, a binary variable describing the
relationship between them is defined as follows:

xm,i =

{
1,The content ci is cached in sm.
0, Otherwise.

(1)

When one customer demanding the content ci with the size
of li, there exist three cases: 1) the content is found in a local
server in this domain; 2) the content is found from a server in
other domains; 3) the content is found in cloud. Despite this,
the overhead per hop per unit size can be unified into η. In
addition, if ∃si satisfied that xm,i = 1, we can calculate the
shortest path between the customer and the server si easily.
Denoting the corresponding hop by hop, then, the overall
routing cost can be calculated as follows:

Minimize : cost = η × hop× li
s.t.

∑
i=1

xm,i × li ≤ Qm,∀sm ∈ S

xm,i ∈ {0, 1},∀i ∈ [1, F ]

hop = min{hopm,i|xm,i = 1}

(2)

where the first constraint indicates that the size of content
cannot exceed the storage capacity of this node; the second
constraint means that one content is either cached or not in
one node; while the last constraint means that the hop between
ci and sm should be minimum.

IV. THE PROPOSED CACHING AND ROUTING ALGORITHM

As explained, this work is composed of four main parts
which are presented in the following.



A. Data Preprocessing

The content related information are collected by edge con-
trollers to analyze the distribution of contents. Besides, we also
extract eight data features to train the prediction model, which
are the time, content name, content size, data rate, throughput,
delay, request node ID and content popularity. However, the
ranges of different data features are different, such that we
use the min-max standard to process them in the first place.
Given any data feature θ with the range of [θmin, θmax], then
we have

θ =


θ − θmin

θmax − θmin
,θmin < θ < θmax.

1, θ = θmax

0, θ = θmin

(3)

Then, these normalized data will be regarded as the input
of the prediction model, while the output of this model is the
popularity level within the scope of [1,10]. The higher the
popularity level, the more popular the content.

B. Content Popularity Prediction

The formats of input and output of the content popularity
prediction module are both defined in the above subsection.
Hence, in this subsection, we mainly describe the prediction
model based on LSTM and TPA. Denoting the hidden state
matrix of LSTM by h = {ht−w, . . . ,ht−1}(w,m), where w is
the size of sliding window and m is the number of variables.
The size of convolution kernel is [w,1] and the number of
convolution kernel (denoted by C) is k, so that the convolution
process is as follows:

Hi,j =

w∑
l=1

hi,(t−w−1+l) × Cj,l. (4)

Now, we introduce the TPA mechanism and calculate the
attention score as follows:

f(st, ht, ct) = HiW[ht; ct], (5)

where Hi is the hidden matrix; W is the training parameters;
ht is the hidden state output; ct is the memory output, at the
time t.

Considering the situation that there may be multiple features
affecting the output at time t, the Sigmoid active func-
tion is applied to obtain the attention score, that is, σi =
sigmoid(f(st, ht, ct)). After getting the score, H should be
weighted to get the context vector vt, that is, vt =

∑m
i=1 σ

t
iHi.

Then, according to the above definition, a new hidden state
output h′t can be re-constructed as follows:

h′t = Whht + Wvvt. (6)

Then, combing the above definition, we can get the predic-
tion model as follows:

yt−1+∆ =Wh′h′t (7)

C. Cooperative Caching

As explained, the content can be hit in three cases. Hence,
we assume that the number of content hit in the local domain,
the other domains and cloud are denoted by φ0, φ1, φ2 respec-
tively. Since we try to improve the QoS by sinking contents
from cloud to the edge, the number of content hit in the local
domain should be increased. Then, the objective of cooperative
caching is formulated as follows:

maximize : φ0 − (φ1 + φ2)

s.t. (2)
(8)

The cooperative caching method regards each edge server as
an intelligent agent and applies the reinforce learning model to
enable each edge server the ability to learn from each other.
Hence, we next design the corresponding action space and
reward function.

1) Action and State Space Design: According to the basis
principle of reinforce learning, the intelligent agents act based
on the environment variables. In this work, we regard the
remaining cache capacity and the number of content hit as
the environment variables. Given any server node sm, the
corresponding state space for such cooperative learning is
defined as follows:

state spacem = {RemCapm, Hitm|m ∈ [1,M ]}, (9)

where RemCapm is the remaining cache capacity and Hitm
is the number of content hit on the node sm.

Similarly, given the content ci and the server node sm, the
action space is designed to be a discrete space, as follows:

action spacem = {xtm,i ∈ {0, 1}|sm ∈ S, ci ∈ C}, (10)

where xtm,i = 1 means that sm should cache ci at the time t.
2) Reward Function Design: Based on the environment

variables, the intelligent agents will take an action, that is,
deciding whether to cache the content or not. After this action,
the environment will also feedback a timely reward signal
to the intelligent agents. This reward ie either positive or
negative, which reflects the affection that taking such action
would have on the environment. As for the intelligent agents
(i.e., edge servers), they need to maximize the positive reward,
such that we define it as follows:

reward = −(αhopφ0 + βhopφ1 + γhopφ2), (11)

where hopφ0
, hopφ1

, hopφ2
are the hops that the content is hit

in the local domain, the other domains and the cloud; α, β, γ
are the corresponding weighting parameters.

3) Active Caching and Passive Replacement: Leveraging
the above definitions of state space and action space, we
establish the reinforce learning model. Training this model
until a stable condition is reached, after which we get the
content caching matrix Xt at time t:

Xt =


xt1,1 xt1,2 . . . xt1,F
xt2,1 xt2,2 . . . xt2,F

...
...

. . .
...

xtM,1 xtM,2 . . . xtM,F

 . (12)



According to the value of any xtm,i, we can actively
determine whether to cache the content ci on the node sm.
Nevertheless, the remaining cache capacity of any node is
limited. Hence, once it cannot satisfy the demands, the passive
content replacement will be triggered, that is, the content with
the lowest popularity will be deleted to release more cache
capacity and then the one with high popularity can be cached.

D. Cooperative Routing

The cooperative routing is implemented between the cloud
and the edge servers. On one hand, the routing calculation is
carried out by the cloud, which relies on using the information
provided by the edge servers. On the other hand, the calculated
routing policy will be distributed to edge servers from clouds.
The overall routing calculating process can be separated into
three steps:
• Selecting the content provider node: according to the

received interest packet name, the edge domain controller
first retrieves the CS and NPCT tables to find server nodes
that cache the content, which are defined as the preferred
node. Then, calculating the cost from any preferred node
to the request node and selecting the one with the lowest
cost as the content provider node.

• Calculating the routing path: regarding the content re-
quest node as the source and the content provider node
as the destination, we use the shortest path to calculate
the routing path between them, which is then delivered
to edge controllers and used for data forwarding.

• Optimizing the routing process: calculating the routing
cost according to (2) and regarding it as another factor
to select the corresponding forwarding and routing path.

Generally, the edge nodes will first forward the request data
according to its FDPD determined by routing policies from
cloud. If no matching item is found in FDPD, this request
will be forwarded to the edge controller which then searches
the CS and NPCT tables. If there are still no matching items,
the edge controller will forward this request to the cloud. As
explained, the centralized cloud has the global network view
and is able to calculate the optimal routing path. After that,
the routing policies will be distributed from cloud to edge
controllers and edge servers. However, it is noted that if there
is any matching item during the searching process, the request
data will be forwarded accordingly.

V. PERFORMANCE EVALUATION

A. Setup

The experimental environment is built using the software
of PyCharm toolkit and Keras library. Firstly, for the content
popularity prediction part, the prediction step is set to 1 unit
and the epoch is set to 50. Secondly, for the caching part,
the epoch is set to 1000 and the weighting parameters of the
reward function are set to α = 1, β = 5, γ = 10 respectively.
Thirdly, for the network routing part, the Uni-C topology is
adopted, which has 15 nodes and 17 links distributed in three
domains. The experimental hardware is Intel(R) Core(TM) i5-
8250U CPU@1.60GHz and Intel(R) UHD GPU Graphics 620.

TABLE I
CONTENT POPULARITY PREDICTION RESULTS

Prediction step k=1
Prediction model MAE RMSE R2

SimpleRNN 0.029 0.036 0.950
LSTM 0.024 0.037 0.964
Att-LSTM 0.027 0.024 0.979
Bi-LSTM 0.021 0.018 0.972
TPA-LSTM 0.011 0.012 0.981

B. Results

1) Content popularity prediction results: In order to show
the benefits of the proposed content popularity prediction
model (i.e., TPA-LSTM), we calculate the Mean Absolute
Error (MAE), the Root Mean Squard Error (RMSE) and the
determination coefficient R2 for TPA-LSTM and the other
four benchmarks (i.e., SimpleRNN, LSTM, Att-LSTM and Bi-
LSTM). The corresponding results are summarized in Table
1 under the setting that k = 1. Specifically, on one hand,
we can easily see that the MAE and RMSE: 1) of TPA-
LSTM are 0.011 and 0.012; 2) of Bi-LSTM are 0.021 and
0.018; 3) of Att-LSTM are 0.027 and 0.024; 4) of LSTM are
0.024 and 0.037; 5) of SimpleRNN are 0.029 and 0.036. Via
comparison, TPA-LSTM has the smallest MAE and RMSE.
Generally, the smaller the values of MAE and RMSE, the
better the prediction results. Hence, we can conclude that
the proposed TPA-LSTM has the best performance, while the
overall prediction performance of SimpleRNN is the worst.
On the other hand, for the metric of R2, the higher the better,
since it is proportional to the fitting effect. Similarly, we can
observe that TPA-LSTM has the highest R2, while that of
SimpleRNN is the smallest. That is because TPA-LSTM can
extract features from the hidden-state vectors of LSTM, which
enables to select data across multiple time steps and thus to
learn efficiently.

2) Content caching and routing results: The proposed
method is firstly compared with the caching benchmarks
of Value Decomposition Network (VDN), Independent Q-
Learning (IQL), Greedy and Least Recently Used (LRU) over
the metrics of the cache hit rate and the average throughput.
The corresponding results are shown in Fig. 2(a) and (b),
where 2(a) corresponds to the cache hit rate and 2(b) corre-
sponds to the average throughput. In particular, the proposed
method has the highest cache hit rate, followed by VDN, IQL,
Greedy and LRU. Note that cache hit rate of the proposed
method increases along with the increasing of the number of
requests, while that of IQL decreases in the first place and then
increases. That is because the proposed method has a global
caching view from the cloud. Then, it can not only passively
carry out the content replacement policy, but also actively
cache the most popular contents accordingly. In addition, the
proposed method supports the vertical cooperation which is
a lack in other benchmarks, such that the proposed method
can execute the intelligent content popularity prediction before
caching. Then, the prediction results provide better guidance



(a) Cache hit rate (b) Average throughput (c) Content delivery rate (d) Average routing overhead

Fig. 2. Experimental results

for caching determination. As for the average throughput,
it is not absolutely proportional to the number of requests.
For example, the throughput of LRU shows a decreasing
trend along with the increasing of the number of requests,
because LRU is not able to process such large amount of
requests. On the contrary, the proposed method perform well
when the number of request increases and it achieves the
highest throughput in most cases. One different point should be
noticed is that the average throughput of the proposed method
is lower than that of Greedy when the number of request is
1000.

Then, we compare the proposed method with the routing
benchmarks of Particle Swarm Optimization (PSO) and Ge-
netic Algorithm (GA) over the metrics of the content delivery
rate and the average routing overhead. The corresponding
results are shown in Fig. 2(c) and (d), where 2(c) corresponds
to the content delivery rate and 2(d) corresponds to the average
routing overhead. For the content delivery rate, we can see
that the performance of the proposed method improves when
the number of request becomes large, while that of the other
two benchmarks fluctuate greatly. Besides, the average content
delivery rate of the proposed method is about 1% 4% higher
than the other two methods. That is because the PSO and GA
both work on edge controllers, while the proposed method
support the vertical cooperation and can work on the basis
of a global network view. Then, it can make better decisions
instead of falling into the local optimum situation. As for the
routing overhead, we can see that the proposed method has the
lowest overhead, followed by PSO and GA. It is aware that
with the vertical cooperation model, we can quickly locate
the expected content source, which directly reduces a lot of
unnecessary searching process, that is, the routing hops can be
reduced and then the overhead is naturally reduced. However,
for PSO and GA, they need to plan a lot of redundant paths
before finding the most optimal one, which is actually costly.

VI. CONCLUSION

By establishing the vertical cooperation model between
cloud and edge server as well as the horizontal cooperation
model among edge servers, we propose a content popularity
prediction based caching and routing method for high efficient
content delivery. In particular, the content popularity prediction
model is based on TPA and LSTM to achieve high prediction
accuracy, while the caching is implemented based on the

reinforce learning model to form a feedback closed loop. The
routing is implemented to build the optimal connection be-
tween customers and contents via the two cooperative models.
Despite this, future work are still required to improve the
adaptability and flexibility of the proposed method.

REFERENCES

[1] C. Zhang, Y. Ueng, C. Studer and A. Burg, Artificial Intelligence for
5G and Beyond 5G: Implementations, Algorithms, and Optimizations,
IEEE Journal on Emerging and Selected Topics in Circuits and Sys-
tems, 2020(10)(2): 149-163.

[2] International Data Corporation, Smartphone Growth to Reach Its
Highest Level, 2021.05, Available online: www.idc.com.

[3] D. Jiang, L. Huo and H. Song, Rethinking Behaviors and Activities
of Base Stations in Mobile Cellular Networks Based on Big Data
Analysis, IEEE Transactions on Network Science and Engineering,
2020(7)(1): 80-90.

[4] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen,
Convergence of Edge Computing and Deep Learning: A Comprehen-
sive Survey, IEEE Communications Surveys & Tutorials, 2020(22)(2):
869-904.

[5] K. Zhang, S. Leng, Y. He, et al., Cooperative content caching in 5G
networks with mobile edge computing, IEEE wireless communications,
2018(25)(3): 80-87.

[6] T. Hou, G. Feng, S. Qin, and W. Jiang, Proactive content caching by
exploiting transfer learning for mobile edge computing, IEEE Global
Communications Conference, Singapore, 2018: 1-6.

[7] P. Yang, N. Zhang, S. Zhang, et al., Content popularity prediction
towards location-aware mobile edge caching, IEEE transactions on
multimedia, 2018(21)(4): 915-929.

[8] D. Lee, J. Choi, J.H. Kim, et al., On the existence of a spectrum of
policies that subsumes the least recently used and least frequently used
policies, SIGMETRICS, 1999(99): 1-4.

[9] X. Zhou, M. Zhao, M. Wu, An in-network caching scheme based
on betweenness and content popularity prediction in content centric
networking, IEEE international symposium on personal, indoor, and
mobile radio communications, Valencia, Spain, 2016: 1-6.

[10] E. Batug, M. Bennis, and M. Debbah, A transfer learning approach
for cache-enabled wireless networks, International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), Mumbai, India, 2015: 161-166.

[11] J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, Learningbased
content caching and sharing for wireless networks, IEEE Transactions
on Communications, 2017(65)(10): 4309-4324.

[12] H. Song, S. Chae, W. Shin, et al., Predictive Caching via Learning
Temporal Distribution of Content Requests, IEEE Communications
Letters, 2019(23)(12): 2335-2339.

[13] W. Jiang, G. Feng, S. Qin, et al., Multi-Agent Reinforcement Learning
Based Cooperative Content Caching for Mobile Edge Networks, IEEE
Access, 2019(7): 61856-61867.

[14] Y. Zhang, B. Feng, W. Quan, et al., Cooperative Edge Caching: A
Multi-Agent Deep Learning Based Approach, IEEE Access, 2020(8):
133212-133224.

[15] C. Zhong, M. Gursoy, S. Velipasalar, Deep Multi-Agent Reinforcement
Learning Based Cooperative Edge Caching in Wireless Networks, IEEE
International Conference on Communications (ICC), 2019: 1-6.


