
Auction-based High Timeliness Data Pricing
under Mobile and Wireless Networks

Yi Zhao1,2, Ke Xu1,2,∗, Feng Yan1, Yuchao Zhang3, Yao Fu4, and Haiyang Wang5
1Department of Computer Science and Technology, Tsinghua University, P.R. China

2Beijing National Research Center for Information Science and Technology (BNRist), P.R. China
3School of Software Engineering, Beijing University of Posts and Telecommunications, P.R. China

4MIGU Culture Technology Inc., P.R. China
5Department of Computer Science, University of Minnesota Duluth, USA

Email: zhaoyi16@mails.tsinghua.edu.cn, xuke@tsinghua.edu.cn, yf16@mails.tsinghua.edu.cn
yczhang@bupt.edu.cn, fuyao 11@163.com, haiyang@d.umn.edu

Abstract—Data is the cornerstone of intelligent algorithms such
as deep learning, and the explosive development of mobile and
wireless networks has prompted more devices to share data in
time via the Internet. Meanwhile, data is highly time sensitive. It
has been found that the value of data is becoming more and more
critical to any application areas, significantly highlighting the
importance of data pricing mechanisms in data transactions. Al-
though traditional auction mechanisms for ordinary commodities
are gradually becoming matures, they fail in the high timeliness
data pricing market due to the following key challenges: Firstly,
the value and price of the high timeliness data is ever changing
with time, making existing mechanisms with fixed prices expired.
Secondly, the price changing of such data is uncertain and
dynamic, requiring the auction mechanisms to work stably under
different price variations of the high timeliness data. To address
these challenges, we for the first time innovatively propose an
efficient auction mechanism for High Timeliness Data Pricing,
namely HTDP. The newly proposed HTDP can maximize the
profit of auctioneer in the high timeliness data transactions. And
the key factor for HTDP’s success is the consideration of the
price changing in the high timeliness data, which fills the blank of
traditional auction mechanisms in this area. We further evaluate
the newly proposed HTDP on the overall auction profit, and
compare the results with the benchmark. Experimental results
demonstrate that HTDP not only achieves high profit under
proper settings, but also is stable and efficient.

Index Terms—Data pricing, Auction, High timeliness

I. INTRODUCTION

With the rapid development of data-dependent algorithms,
such as deep learning [1], the information age has evolved
into the data age. With valuable knowledge, data has the
potential to create business value. Therefore, data transactions
are attracting more and more attentions [2], and multiple new
data application scenarios (e.g., data markets and data banks)
have begun to take shape. For example, Twitter licenses its data
to Gnit for sale [3], and Inrix collects data directly through its
network and sensors [4].

In recent years, mobile and wireless networks have expe-
rienced explosive growth [5], allowing more devices (e.g.,
wearable devices and industrial IoT devices) to transmit data
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in a timely manner. As a special commodity, the key difference
between data and other general commodities is that data has
the high timeliness characteristics. In other words, the value of
data changes over time, and may even change from valuable
to worthless in an instant. For example, shared bicycles (e.g.,
Mobike) are producing huge amounts of user mobility data
every day. After removing private information, these real-time
user mobility data is crucial to many services companies (e.g.,
catering companies). This is because the company, which has
the access to such real-time data, can quickly adjusts its market
operation strategies by providing customized services to those
bicycle users. But as time goes by, the bicycle usage data
cannot provide any timely and valuable information.

Fig. 1. An overview of programmatic data trading system.

Auction-based mechanisms [6], [7] have always been the
classic solutions for data transactions and data pricing. How-
ever, existing auction mechanisms fail in the high timeliness
data transactions due to the following two challenges. Firstly,
the value of data changes with time, but the previous pricing
strategies are designed for the price-fixed scenario. Thus,
existing pricing strategies are not applicable to high timeliness
commodities. Secondly, the price changing of such data is
uncertain and dynamic, requiring the auction mechanisms
to work stably under different price variations of the high
timeliness data. In addition to auction mechanisms [8]–[10],



traditional pricing strategies (e.g., pay-per-time, pay-per-use,
and freemium) also become invalidate in the high timeliness
data transaction scenario.

To address above challenges, this paper for the first time
innovatively proposes an efficient auction mechanism for High
Timeliness Data Pricing, namely HTDP, which is a real-time
one-by-one multi-price auction mechanism for maximizing
the profit of auctioneer. In addition, we have designed a
programmatic data trading system to run the auction-based
pricing framework, as illustrated in Fig. 1. Regarding the
newly proposed HTDP, we consider price changing in the
data auction, and model the change of data value by different
variations. To enable HTDP to work in different application
scenarios, we give further analysis of HTDP in both determin-
istic auctions and random auctions.

The main contributions in this paper are as follows:

• A novel auction-based pricing mechanism for data is
proposed, which for the first time integrates the high
timeliness into data trading.

• Regardless of the pricing changing pattern, HTDP could
work well with different price variations.

• Experiments have demonstrated that HTDP not only
achieves high profit, but also is stable and efficient in
the high timeliness data auctions.

II. RELATED WORK

With the rapid accumulation of data and data-dependent
intelligent applications [11], the data market has attracted the
attention of academia and industry. For example, Muschalle A.
et al. [6] analyze the participant demands and the beneficiaries
of the data market, as well as the major challenges of pricing
strategies in different market conditions.

In terms of data pricing models, Heckman et al. [12]
establish a universal pricing model for the data market. They
have investigated the properties of data, classified the datasets
and selected attributes which can be applied to determining
the value of data. The candidate attributes contain value
parameters of the data for consumers, the quality parameters of
the data itself, and the parameters of fixed and marginal costs.
A linear model is built to calculate the data value through
the weighted summation of the cost and the value of relevant
attributes. But it is a big challenge to estimate the value of
each attribute. They propose to use Google AdWords’s price
to predict the data value and train the machine to learn the
regression model to determine the impact of relevant attributes
on the data value. This work gives the idea and suggestion of
data pricing from the perspective of data valuation, but it does
not propose specific, scientific algorithms or mechanisms to
price data commodities in the data market.

In fact, there are many studies focusing on pricing problem,
such as the network resources pricing [13], [14], time-based
pricing [15], [16], auction performance analysis [7], [17], and
digital commodity auctions [18]. Digital goods are similar to
data, but there are essential differences, especially in terms of
the high timeliness characteristics. In this article, we propose

a novel auction-based mechanism for data pricing, which
focuses on the high timeliness characteristics.

III. HTDP MODEL

Traditional digital commodity auctions have a deadline
for bidding. These auction-based mechanisms receive the
entire sequence of bidding information, and then decide who
wins the auction and at what price. These commodities are
auctioned once and delivered to all successful bidders. Bar-
Yossef et al. [19] propose an online auction mechanism, where
commodities can be auctioned continuously without an auction
deadline. Based on this theory, we enrich it into HTDP. The
bidder at different bidding time has to decide the outcome
of the current target before the next bidding submission. The
referred price si can be calculated from the bidding of the
previous bidders. When a bidding bi enters into the auction
system, comparing the bi with the referred price si. If the bi is
higher than or equal to the referred price si, the bidder wins.
Otherwise, the bidder fails in the auction. Finally, the current
auction results will return to the current bidders.

Regarding the newly proposed HTDP, each bidder i has a
psychological valuation vi of the auction data item, i.e., the
highest price that the bidder i is willing to pay. And its actual
bidding is expressed in bi. If the bidder will set vi as its
bidding (i.e., bi = vi), the behavior of bidder i is truthful.
In HTDP, telling the truth is the optimal strategy for bidders.
When all users are telling the truth, the auction can reaches
equilibrium. In other words, no one is willing to change his or
her bidding decision. In HTDP, the profit of auctioneer is the
sum of all prices paid by the winning bidders. If bidder wins
in the auction, the utility equals the valuation minus payment
price. Otherwise, the bidder fails to get the commodity, and
the utility is zero. We assume that each bidder’s target is
to maximize his or her own utility. Meanwhile, all user are
bidding-independent in HTDP, i.e., the bidder’s bidding only
to determine whether he or she wins the auction or not, without
determining its final price paid for the commodity.

The bidder’s bidding is within the range of [1, h],
which is divided into L = ⌊log2 h⌋ + 1 subsets, i.e.,
I0, I1, · · · , Ij , Ij+1, · · · , IL−2, IL−1, where Ij = [2j , 2j+1).

For different scenarios, we have proposed two pricing
auction mechanisms with HTDP, i.e., HTDP-DA and HTDP-
RA. More specifically, in the proposed HTDP, different bidders
submit the bid at different time. Before the next bid is
submitted, the referred price has been determined from the
bids of previous bidders. Therefore, the the referred price for
user i can calculated based on the bids of previous bidders
b1, · · · , bi−1 and the time t, denoted by Eq. (1).

si = f(b1, · · · , bi−1, t) (1)

When f is a deterministic function, it is a deterministic
auction, and we utilize the HTDP-DA mechanism. When f
for the auctioneer to calculate the distribution and price is
random, it is a randomized auction, and we have to utilize the
HTDP-RA mechanism. Note that when bi is greater than or



equal to si, the bidder wins the auction, otherwise he or she
fails in the data auction.

Before introducing the two newly proposed auction mech-
anisms, we first introduce two basic modules, i.e., optimal
single-price auction and optimal multi-price auction. More
specifically, optimal single-price auction means that all the
winning bidders are required to pay the same transaction price.
F represents the profit of the optimal single-price auction. The
number of bidders is denoted by n, and the bidding of bidder
i is denoted by bi. And then, the bidding set of all bidders in
the auction can be denoted by B = {b1, · · · , bn}. Note that
the elements in B are sorted in descending order. The target
of optimal single-price auction is to determine the number of
winners k, denoted by Eq. (2), so that the profit khk is the
largest. And Bidders satisfying bi ≥ hk can become winners,
and the transaction price is hk.

F = max
k

khk (2)

Therefore, the optimal transaction price is argmax
k

khk. In the
following content, we will use this price as a benchmark to
analyze other auction mechanisms.

Different from the optimal single-price auction, the opti-
mal multi-price auction means that the transaction price for
different winning bidders can be different. In other words, all
bidders can be winners. In this scenario, the optimal profit is
the sum of the biddings of all bidders, denoted by Eq. (3)

M =

n∑
i=1

bi (3)

According to the Eq. (3), it can be found that M is the
upper bound of the auction profit, because it charges the true
valuation of each bidder.

We use R to represent the auction profit, i.e., the sum of
the prices paid by all winning bidders, where E[R] is expected
earnings for random auctions. v̄ represents the bidder’s valua-
tion sequence for the pending data. And F (v̄) represents that
the optimal profit obtained from fixed pricing method (i.e.,
the optimal single-price auction) based on the sequence v̄. As
defined above, B is the input of the trading system. And h is
the maximum bidding in all bidders, while l is the minimum
bidding in all bidders. In addition, we use Φ to represent the
upper bound of R/M or R/F , and Ω is the lower bound of
R/M or R/F .

A. HTDP-DA: HTDP to Deterministic Auctions

In this part, we describe the High Timeliness Data Pricing
to Deterministic Auctions (i.e., HTDP-DA) and the theory
derived from the upper bound of its profit. For any bi, if
bi ≥ si, bidder i needs to pay si to get the commodity,
otherwise the bidder fails in the auction. From Eq. (1), it can be
found the si is related to the time t, which achieve the goal of
taking into account the high timeliness of the data. Regarding
the deterministic auction, the f in Eq. (1) is a deterministic
function about time.

Theorem 1. Compared to the optimal fixed pricing profit,
any incentive-compatible HTDP-DA is Φ(h)-competitive, even
when v̄ is limited to the following conditions: for any α ≥ 1,
there are F (v̄) ≥ αh.

Proof of Theorem 1: The bidding price of any bidder,
si, depends on b1, · · · , bi−1 and time t. We construct a value
sequence v̄, which satisfy R(v̄) ≤ F (v̄)/h. Note that v̄ is
a biphasic sequence. In other words, the elements in this
sequence contain only 1 and h. For such a sequence, we can,
without loss of generality, assume that si is only taken from
1 and h, and the probability of 1 and h is related to t. This
can indicate whether the submitted bid can win, and at what
price, are time-dependent.

We assume any constant α ≥ 1. And the rules for con-
structing the value sequence v̄ are as follows. If si = 1, then
vi = h. If si = h, then vi = 1. Until the number of elements
with the value of 1 in v̄ is greater than αh, or the number
of elements with the value of h is more than α. The winning
bidder i needs to pay the transaction price si in the auction.
Therefore, when vi = 1, the profit earned by the auction from
bidder i is 0. And when vi = h, the profit is 1. We adopt
nh to represent the number of h in v̄ and nl represents the
number of 1, then R(v̄) = nh · 1 + nl · 0 = nh. On the other
hand, F (v̄) ≥ max {hnh, nl}. Thus, when F (v̄) ≥ αh, we
have R(v̄) ≤ F (v̄)/h.

B. HTDP-RA: HTDP to Random Auctions

In addition to deterministic auctions, there may also be
random auctions. Therefore, in this part, we describe the High
Timeliness Data Pricing to Random Auctions (i.e., HTDP-
RA). And we have theoretically derived the lower bound on
profit. And we assume that the bid scope of bidders is known.
First, design an auction mechanism S. For the bidder i, we
randomly select a j, so j ∈ {0, · · · , ⌊log2 h⌋}, si = f(2j , t).
For example, as the time goes, if the price of data is reducing,
then si = 2j/t. And if the price of data is increasing, then
si = 2j · t. Obviously, S the bid-independent.

Theorem 2. Compared to the optimal fixed pricing profit, i.e.,
F , auction mechanism S is Ω(log h)-competitive.

Proof of Theorem 2: First of all, we prove that the
auction mechanism S is Ω(log h)-competitive compare to the
optimal single-price auction M . Thus, the auction mechanism
S is also Ω(log h)-competitive compared to F .

For each bi, ji represents the maximum integer j, which
satisfies 2jit ≤ vi. Due to vi/2 ≤ 2jit ≤ vi, if we have
si = 2jit in the auction mechanism S, it is ensured that the
auctioneer obtains at least vi/2 revenue from the bidder i.
Thus, we have Eq. (4).

E(R) ≥
n∑

i=1

vi
2
Pr[si = 2jit] (4)

Since j is uniformly and randomly selected, we can have
Eq. (5).



E(R) ≥
n∑

i=1

vi
2

1

(log h+ 1)
=

1

2(log h+ 1)
M (5)

It has demonstrated that auction mechanism S is Ω(log h)-
competitive compared to M . Since M ≥ F , we have E(R) ≥

1
2(log h+1)F , i.e., the auction mechanism S also is Ω(log h)-
competitive compared to F .

C. Analysis of Truthful Auction

In this part, we prove that telling the truth is the best strategy
for each user in the HDTP mechanism. As formally notified,
each bidder i has a psychological valuation vi on data, which
represents the maximum price that the bidder i is willing to
pay. However, the user’s real bid is represented by bi. The
utility of user i is defined as Eq. (6)

u(i) =

{
vi −max

z ̸=i
bz, if bi > max

z ̸=i
bz

0, otherwise
(6)

To prove that telling the truth is the optimal strategy for each
user, we consider three scenarios based on the relationship
between vi and bi.

1) vi = bi: Obviously, this is telling the truth.
2) bi > vi: This is an overly competitive bidding strategy.

When vi > max
z ̸=i

bz , whether it is telling the truth (vi) or

overly competitive bidding (bi), the bidder will get data for
auction. Overly competitive bidding strategy cannot change
the profit, so the bidder will choose to tell the truth. When
bi < max

z ̸=i
bz , the bidder cannot win regardless of the strategy.

When vi < max
z ̸=i

bz < bi, overly competitive bidding strategy

bidding can enable users to obtain data, but the profit is
negative. Considering individual rationality, users will still
choose to tell the truth.

3) bi < vi: This is a conservative bidding strategy When
vi < max

z ̸=i
bz , the bidder cannot win regardless of the strategy.

When bi > max
z ̸=i

bz , both bidding strategies (i.e., telling the

truth and telling a lie) enable bidders to win with the same
profit. Therefore, the bidder will tell the truth. When bi <
max
z ̸=i

bz < vi, if the bidder tells a lie, he or she cannot get the

data and the profit is 0. Conversely, telling the truth enable
the profit of bidder to be positive. Therefore, telling sthe truth
is the optimal strategy.

In summary, HTDP has been proven to be a truthful auction.

IV. EXPERIMENTS

In this section, we evaluate the profits of HTDP, where the
biddings are subject to different distributions (i.e., Bipolar dis-
tribution and Zipf distribution). As formally notified, the profit
F of optimal single-price auction is used as the benchmark.

A. HTDP in Bipolar Distribution

First of all, we evaluate the profit, where the biddings are
subject to the Bipolar distribution, i.e., the bidding has only
one or two inputs (1 or h). And we take HTDP-DA as an
example for analysis, that is, the relationship between price
(i.e., value) and time is calculated based on the deterministic
function in Eq. (1).

As illustrated in Fig. 2(a), regardless of whether the price si
and time t are positively or negatively correlated, the profit of
HTDP-DA will increase as the number of bidders participating
in the auction increases. It can also be found that, when the
number of bidders is less than 100, the auction performance is
unstable. When the number of bidders gradually exceeds 100,
the profit increases significantly, no matter how timeliness is
related to value. Finally, when the number of bidders is large
enough, the profit of HTDP-DA tends to be stable and is close
to the maximum profit.

Fig. 2(b) shows how the ratio of the number of h to the
quantity of 1 in bidding set B affects the profit. It can be
found that, the profit is higher when the ratio of the number
of h to the quantity of 1 tends to be 1. When the ratio of the
number of h to the quantity of 1 deviates greatly from 1, the
performance of HTDP-DA is less stable. And when the ratio
of the number of h to the quantity of 1 tends to 1, the profit
tends to be stable.

In Fig. 2(c), we can find that regardless of the relationship
between price and time (i.e., positively or negatively), as the
number of winners increases, the auction profit increases.
When the number of successful bidders is less than 100, the
auction performance is unstable. And when the number of
successful bidders is around 100, the efficiency of auction
mechanism increases rapidly. Finally, when the number of
successful bidders is large enough, the profit tends to be stable,
as well as the maximum profit.

Fig. 2(d) shows how the ratio of the number of winners
to the total number n affects the profit. It can be found that,
the profit increases with the ratio. The auctioneer’s profit is
higher when the ratio of the number of successful bidders to
the total number n tends to be 0.5. When the ratio deviates
greatly from 0.5, the newly proposed HTDP-DA performance
is less stable. And when the ratio tends to 0.5, the auctioneer’s
profit tends to be stable.

According to the results of Fig. 2(a) to Fig. 2(d), it can
be found that, the newly proposed HTDP-DA is a profitable
auction mechanism with Bipolar distribution.

B. HTDP-DA in Zipf Distribution

Here, we evaluate the profit of HTDP-DA, where the bid-
dings are subject to the Zipf distribution, i.e., the bidding
ranges from 1 to h. And the referred price (i.e., the winning
price) is calculated based on the deterministic function. More
specifically, regarding the Zipf distribution, 80% of the bid-
dings are from 20% of the bidders.

Fig. 3(a) shows the impact of the number of bidders on
profit. It can be found that regardless of the correlation
between price and time, the profit will increase as the number
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of users increases. Moreover, when the number of bidders is
less than 100, the auction performance is unstable. When the
number of bidders is large enough, the profit of HTDP-DA
tends to be extremely stable, and achieve the maximum profit.

In terms of the number of successful bidders, we can see
from Fig. 3(b) that, the profits are gradually increasing. And
the difference in correlation between price and time (i.e.,
positively or negatively) will not have a different effect.

Fig. 3(c) shows how the ratio of the number of winners
to the total number n affects the profit. It can be found that,
when the ratio of the number of successful bidders to the
total number n gathers in the range of [0.4, 0.45], the profits
of HTDP-DA are maintained at a high level. When the ratio
deviates greatly from [0.4, 0.45], the HTDP-DA performance
is less stable. In contrast, when the ratio tends to [0.4, 0.45],
the auctioneer’s profit tends to be stable.

The above experimental results can demonstrate that the
newly proposed HTDP-DA is a profitable auction mechanism
with Zipf distribution.

C. HTDP-RA in Zipf Distribution
In this part, we further analyze the HTDP-RA in Zipf

distribution. Similar to the configuration in Subsection IV-B,
the biddings are also subject to the Zipf distribution, i.e., the
bidding ranges from 1 to h. The different is that the referred
price is calculated from the random function, instead of the
deterministic function.

Fig. 4(a) describes the impact of the number of bidders.
Similar to the phenomena in Subsection IV-A and Subsec-

tion IV-B, when the biddings are also subject to the Zipf
distribution with the random function, the profit will still
increase with the number of bidders. And it is not affected by
the relevance of price to time. And when the number of bidders
is less than 100, the performance of HTDP-RA is unstable.
When the number of bidders increases sufficiently, the profits
tend to stabilize and stay near the highest value.

Regarding Fig. 4(b), it shows the effect of the number of
successful bidders. It can be found that, it is similar to the
results of Fig. 4(a). This is because both the number of bidders
and the number of successful bidders have a positive effect on
the profit in HTDP-RA.

Fig. 4(c) shows how the ratio of the number of winners
to the total number n affects the profit. It can be found that,
when the ratio of the number of successful bidders to the
total number n gathers in the range of [0.35, 0.4], the profits
of HTDP-RA are maintained at a high level. When the ratio
deviates greatly from [0.35, 0.4], the HTDP-RA performance
is less stable, and the profits are scattered at a lower level. In
contrast, when the ratio tends to [0.35, 0.4], the auctioneer’s
profit tends to be stable.

Similarly, according to the results of Fig. 4(a) to Fig. 4(c), it
can be found that, the newly proposed HTDP-RA is a profitable
auction mechanism with Zipf distribution.

In summary, the number of bidders always has a positive
effect on the profit. Whether it is a deterministic or random
function in terms of the value function, or an Bipolar or Zipf
distribution in terms of the bidding distribution, the profit
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always increases with the number of bidders, and eventually
tends to a stable maximum profit. Meanwhile, the effect of the
number of successful bidders is similar to that of the number
of bidders. Regarding the ratio of the number of successful
bidders to the total number n, the performance of profit is
relatively stable and concentrated when the ratio gathers in a
certain range. As the deviation from this range intensifies, the
stability of profit performance deteriorates. In addition, this
ratio range may differ for different mechanisms (i.e., HTDP-
DA and HTDP-RA) and distributions (i.e., Bipolar and Zipf).

V. CONCLUSION

With the extensive accumulation of data, and the penetration
of data-dependent intelligent applications in various scenarios,
data trading has become an irreversible trend. Considering the
value of data is closely related to timeliness, we propose a
programmatic trading framework for the first time in this pa-
per, which implements the auction-based pricing mechanisms
and incorporates the high timeliness of data. In addition, in
terms of the relationship between value and time, we consider
the two scenarios of determinism and randomness separately,
i.e., HTDP-DA and HTDP-RA. And theoretical analysis and
experimental results demonstrate that they are both truthful and
profitable auction mechanisms. In the future, the development
of data trading and pricing requires more considerations. For
example, data can be used in multiple rounds, and how
the multi-round auction mechanism can integrate the high
timeliness of data remains to be solved.
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